Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Синтез белков, содержащих остатки селеноцистеина
С помощью своеобразного механизма осуществляется передача генетической информации от генов к полипептидным цепям селенопротеинов с необычным аминокислотным остатком – селеноцистеином, входящим в их состав. У бактерий и млекопитающих известно более десяти ферментов, в состав активных центров которых входит остаток селеноцистеина, содержащего, в отличие от цистеина, атом селена вместо атома серы. Так, у E. coli гены форматдегидрогеназ H, N или O имеют в одной рамке считывания с кодирующей последовательностью нуклеотидов триплет TGA. Этому триплету в мРНК соответствует бессмысленный кодон UGA, на котором у подавляющего большинства других мРНК E. coli происходит терминация трансляции. Оказалось, что именно кодон UGA в мРНК вышеупомянутых генов кодирует селеноцистеин. Встраивание этого аминокислотного остатка в полипептидные цепи регулируется весьма тонким механизмом. Перенос остатка селеноцистеина к рибосомам у E. coli осуществляется с помощью специальных молекул тРНК (тРНКSec), которые на первом этапе соединяются с остатком L-Ser при участии серил-тРНК-синтетазы. Образовавшаяся серил-тРНКSec далее в результате многоступенчатого процесса под действием селеноцистеилсинтазы превращается в селеноцистеил-тРНКSec. Селеноцистеилсинтаза обладает высокой специфичностью и не взаимодействует с другими изоакцепторными серил-тРНК бактериальных клеток. Именно селеноцистеил-тРНКSec в процессе трансляции распознает в мРНК кодон UGA, но лишь в определенном контексте: для правильного узнавания UGA-кодона как осмысленного важна последовательность длиной в 45 нуклеотидов, расположенная вслед за UGA-кодоном. Кроме того, для правильного узнавания UGA-кодона селеноцистеил-тРНКSec необходимо участие белкового продукта гена selB, который является гомологом фактора элонгации трансляции EF-Tu и обладает высоким сродством именно к селеноцистеил-тРНКSec, но не к серил-тРНКSec. К тем же результатам, хотя и с использованием другого, не вполне понятного механизма, приводит встраивание в полипептидные цепи остатков селеноцистеина у млекопитающих. Рассмотренный пример показывает, что при необходимости живой организм может изменять смысл стандартного генетического кода. В этом случае генетическая информация, заключенная в генах, кодируется более сложным образом. Смысл кодона определяется лишь в контексте с определенной протяженной последовательностью нуклеотидов и при участии нескольких высокоспецифических белковых факторов. Данный пример по-новому освещает понятие гена и смысл заключенной в нем генетической информации и не является единственным в своем роде. Описано изменение смысла антикодона в тРНК путем посттранскрипционной модификации остатка цитозина с образованием так называемого лизидина. В этом случае происходит ферментативное присоединение Lys к гетероциклу цитидина в положении 2. В результате образовавшееся модифицированное основание – лизидин распознается как уридин, что изменяет специфичность антикодона модифицированной тРНК. Другое U-подобное азотистое основание – 5-карбамоилметилуридин (U*), обнаружено в антикодоне тРНКPro (U*GG), хотя в соответствующем гене этот антикодон детерминирован последовательностью CGG. По-видимому, здесь происходит посттранскрипционное дезаминирование цитозина с последующей его гипермодификацией. Таким образом, во всех приведенных примерах живым организмам недостаточно генетической информации, заключенной в их генах, для ее полноценной реализации в фенотипе. Пока не понятны причины, по которым организм избегает прямого кодирования соответствующих последовательностей нуклеотидов в своих генах, а предпочитает создание требуемых последовательностей в РНК путем посттранскрипционных модификаций первичных транскриптов. Такие факты меняют наше традиционное представление о генах как первичных носителях генетической информации.
|