Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Анализ патентной информации






 

К авиационному двигателю предъявляют весьма жесткие технические требования не только по тяге, но и по возможностям использования в альтернативных технологиях, например, в технологиях двойного назначения или в инновационных технологиях, для создания новых летательных аппаратов, тактико-технические характеристики которых должны превосходить показатели лучших зарубежных аналогов. По этой причине приоритетными техническими требованиями к рассматриваемым изделиям относят не только тягу, но и удельные параметры, ресурс, надежность. Для удовлетворения таких требований создать современный авиационный двигатель без применения методов науки, новейших конструкционных материалов и высоких (критических) технологий не представляется возможным[7].

В данном разделе проводится обзор патентных документов, а именно изобретений, полезных моделей и промышленных образцов, размещенных в базе данных Роспатента РФ для определения высоких и критических узловых технологий в области создания новейшей авиационной техники. Сбор материала проводится по каждому узлу газотурбинного двигателя, т. е. рас­сматри­ваются патентные документы по вентилятору, компрессору, камере сгорания, турбине, форсажной камере и реактивному соплу. Акцент делается на параметры, улучшающие технические возмож­ности реактивных двигателей - тягу (кг), степень сжатия компрессора, а также температуру газа перед турбиной (°К). По результатам обзора патентной информации можно построить базу данных по узловым технологиям для выполнения дальнейших работ по обеспечению технологической готовности к созданию авиационных двигателей нового поколения (рис.3.1).

 

Рис.3.1. Окно электронной базы данных по узловым технологиям авиационных двигателей в системе MS Access

«Кликнув» по кнопке, соответствующей какому-либо узлу авиационного двигателя, можно открыть окно, отражающее список патентных документов с их подробным описанием, иллюстрациями и таблицами.

На рис. 3.2 приведены примеры патентных документов по турбине авиационного двигателя – объекту дальнейших исследований данной работы по разработке предварительного проекта технологической документации и технического предложения по созданию конкурентоспособных ГТД.

 

 

 

Рис.3.2. Пример построения окон электронной базы данных по узловым технологиям авиационных двигателей в системе MS Access для турбины

 

Таким образом, с помощью разработанной электронной базы данных представляется возможным определить приоритетный перечень высоких и критических технологии создания реактивных двигателей нового поколения.

 

 

n 1. Газотурбинный двигатель, отличающийся тем, что он снабжен компрессорной секцией сжатия входящего воздуха в воздух высокого давления и воздух промежуточного давления, секцией камеры сгорания топлива со сжатым воздухом, имеющей сообщение с указанной компрессорной секцией, турбинной секцией, связанной с указанной секцией камеры сгорания с возможностью сообщения с газообразными продуктами сгорания из нее и содержащей турбинную лопатку, имеющую вершину, расположенную в области более низкого давления, чем указанное промежуточное давление, в основном кольцевой полостью, расположенной выше компрессорной секции по направлению потока и содержащей отвод, сообщающийся с указанным воздухом промежуточного давления, и перегородку, установленную в указанной кольцевой полости с возможностью преобразования динамического напора указанного воздуха промежуточного давления в повышенное статическое давление этого воздуха, и каналом, имеющим входное отверстие сообщения с указанной полостью и выходное отверстие, имеющее сообщение с указанной турбинной лопаткой с возможностью направления указанного воздуха промежуточного давления под повышенным давлением к указанной турбинной лопатке.

n 2. Двигатель по п.1, отличающийся тем, что указанная перегородка содержит стенку, расположенную в основном в радиальном направлении относительно центральной оси двигателя.

n 3. Двигатель по п.1, отличающийся тем, что указанная турбинная лопатка содержит входную кромку, статическое давление вблизи которой выше или незначительно ниже давления указанного воздуха промежуточного давления.

n 4. Двигатель по п.1, отличающийся тем, что указанный канал содержит трубопровод, расположенный от указанной компрессорной секции до указанной турбинной секции.

n 5. Двигатель по п.1, отличающийся тем, что указанная турбинная лопатка не имеет узла охлаждения посредством распределительных головок.

n 6. Двигатель по п.1, отличающийся тем, что указанный канал является основным источником подачи охлаждающего воздуха к указанной турбинной лопатке.

n 7. Способ охлаждения деталей, размещенных внутри газотурбинного двигателя, содержащего сообщающиеся друг с другом компрессорную секцию, секцию камеры сгорания и турбинную секцию, отличающийся тем, что от указанной компрессорной секции отводят воздух промежуточного давления, имеющий температуру ниже температуры воздуха, поступающего в указанную секцию камеры сгорания под наивысшим давлением, осуществляют повышение давления указанного отведенного воздуха промежуточного давления до величины, превышающей статическое давление у вращающейся турбинной лопатки в указанной турбинной секции, и направляют указанный воздух промежуточного давления под его повышенным давлением к указанной вращающейся турбинной лопатке, посредством чего осуществляют ее охлаждение.

n 8. Способ по п.7, отличающийся тем, что при указанном повышении давления отводят указанный воздух промежуточного давления в полость и преобразуют его энергию вращения в повышенное статическое давление.

n 9. Способ по п.8, отличающийся тем, что после указанного повышения давления входная кромка указанной турбинной лопатки находится под статическим давлением меньшим, чем давление указанного воздуха промежуточного давления.

n 10. Способ по п.7, отличающийся тем, что воздух промежуточного давления направляют к лопатке турбины высокого давления.

n 11. Газотурбинный двигатель, отличающийся тем, что он снабжен средством сжатия входного воздуха в воздух высокого давления и воздух промежуточного давления, средством сжигания топлива в смеси со сжатым воздухом из указанного средства сжатия, турбинной секцией, содержащей турбинную лопатку и связанной с указанным средством сжигания с возможностью сообщения с газообразными продуктами сгорания из него, средством отвода указанного воздуха промежуточного давления из указанного средства сжатия, средством повышения давления указанного воздуха промежуточного давления выше статического давления в зоне указанной турбинной лопатки, средством направления указанного воздуха промежуточного давления под повышенным давлением от указанного средства повышения давления к указанной турбинной лопатке и ее охлаждения.

 

Изобретение относится к машиностроению и может быть применено при изготовлении жаростойких деталей, используемых, например, в устройствах для термического нанесения покрытий или в газовых турбинах.

Рабочую поверхность детали покрывают чередующимися слоями из жаростойкого и жаропрочного металлокерамического материала, представляющего собой слои тугоплавких окислов металлов, разделенных компенсационными слоями пластичного металла. Компенсационные слои выполняют из тех же металлов, окислы которых составляют основу тугоплавких металлокерамических слоев. Состав компонентов подбирается таким образом, чтобы коэффициент термического растяжения внутреннего слоя отличался от коэффициента термического растяжения покрываемого металла не более чем на 15%.

1. Жаростойкое металлокерамическое покрытие, состоящее из чередующихся слоев тугоплавких окислов металлов, разделенных компенсационными слоями пластичного металла, отличающееся тем, что компенсационные слои выполнены из тех же металлов, окислы которых составляют основу тугоплавких металлокерамических слоев.

2. Покрытие по п.1, в котором состав компонентов металлокерамики подбирают таким образом, что коэффициент термического растяжения внутреннего слоя окислов металлов отличается от коэффициента термического растяжения покрываемого металла не более чем на 15%.

Изобретение обеспечивает увеличение стойкости рабочей поверхности деталей, подверженных ударно-термическому воздействию струи газа.

 

Анализируя электронную базу данных и приведенные в ней сведения патентной статистики по высокоманевренным истребителям и многоцелевым ударным самолетам зарубежной военной авиации, можно сделать вывод, что они характе­ризуются высоким уровнем температуры газа перед турбиной 1850…1950 0K, малой величиной степени двухконтурности и существенно улучшенными массово-габаритными показателями. Двигатели имеют отношение тяги к массе R Ф0/ M дв = 9…10, высокою лобовую тягу, минимальное число деталей, существенно улучшенные эксплуатационные характеристики (ресурс составляет 50…100% ресурса планера, надежность на 60…80% выше, трудоемкость технического обслуживания в 2…3 раза меньше, стоимость жизненного цикла примерно в 1, 3 раза меньше по сравнению с теми же параметрами двигателей 4-ого поколения, которые находятся в эксплуатации). Они обеспечивают крейсерский полет со сверхзвуковой скоростью на нефорсированном режиме, высокую маневренность и высокие взлетно-посадочные характеристики, а также низкий уровень заметности и высокую боевую живучесть[8].

Анализ тенденций развития авиационных двигателей по электронной базе данных показал, что происходит постоянный рост качества, выражающийся в улучшении экономичности, снижении уровней шума и эмиссии вредных веществ, повышении надежности и увеличении ресурса вплоть до значений ресурса планера летательного аппарата.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.