Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Решение. Имеем систему (М/М/1): (GD/ / ) с параметрами , клиентов в час.






    Имеем систему (М/М/ 1): (GD / / ) с параметрами , клиентов в час.

    Найдем сначала операционные характеристики системы.

    – система войдет в стационарный режим.

    человека;

    часа = 6 минут; минуты;

    человека; ; .

    Чтобы очередному клиенту досталось сидячее место, нужно, чтобы в тот момент времени, когда он подойдет к банкомату, в системе было от одного до двух человек. Вероятность p этого события равна

    .

    Вероятность того, что очередной клиент не будет стоять в очереди равна .

    Тогда в среднем 70% клиентов банкомата будут дожидаться своей очереди сидя или вовсе в ней не стоять, а 30% придется ждать стоя. При этом банкомат простаивает без клиентов всего времени работы. Вероятность того, что очередной клиент банкомата станет в очередь, равна .

    Распределение времени нахождения в системе (М/М/1): (FIFO/ / )

    Здесь мы определим закон распределения случайной величины Т – времени нахождения в системе очередного прибывшего клиента. Поток клиентов – простейший; время обслуживания имеет показательное распределение с параметром , в наличии только один канал обслуживания.

    Функция плотности вероятности случайной величины такова:

    Перед нами показательное распределение с параметром






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.