Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Перевод чисел из системы счисления с основанием 2 в систему счисления с основанием 2n и обратно
Перевод целых чисел. Если основание q-ичной системы счисления является степенью числа 2, то перевод чисел из q-ичной системы счисления в 2-ичную и обратно можно проводить по более простым правилам. Для того, чтобы целое двоичное число записать в системе счисления с основанием q=2n, нужно: 1. Двоичное число разбить справа налево на группы по n цифр в каждой. 2. Если в последней левой группе окажется меньше n разрядов, то ее надо дополнить слева нулями до нужного числа разрядов. 3. Рассмотреть каждую группу как n-разрядное двоичное число и записать ее соответствующей цифрой в системе счисления с основанием q=2n. Пример 7. Число 1011000010001100102 переведем в восьмеричную систему счисления. Разбиваем число справа налево на триады и под каждой из них записываем соответствующую восьмеричную цифру:
Пример 8. Число 10000000001111100001112 переведем в шестнадцатеричную систему счисления. Разбиваем число справа налево на тетрады и под каждой из них записываем соответствующую шестнадцатеричную цифру:
Перевод дробных чисел. Для того, чтобы дробное двоичное число записать в системе счисления с основанием q=2n, нужно: 1. Двоичное число разбить слева направо на группы по n цифр в каждой. 2. Если в последней правой группе окажется меньше n разрядов, то ее надо дополнить справа нулями до нужного числа разрядов. 3. Рассмотреть каждую группу как n-разрядное двоичное число и записать ее соответствующей цифрой в системе счисления с основанием q=2n. Пример 9. Число 0, 101100012 переведем в восьмеричную систему счисления. Разбиваем число слева направо на триады и под каждой из них записываем соответствующую восьмеричную цифру:
Пример 10. Число 0, 1000000000112 переведем в шестнадцатеричную систему счисления. Разбиваем число слева направо на тетрады и под каждой из них записываем соответствующую шестнадцатеричную цифру:
Перевод произвольных чисел. Для того, чтобы произвольное двоичное число записать в системе счисления с основанием q=2n, нужно: 1. Целую часть данного двоичного числа разбить справа налево, а дробную — слева направо на группы по n цифр в каждой. 2. Если в последних левой и/или правой группах окажется меньше n разрядов, то их надо дополнить слева и/или справа нулями до нужного числа разрядов; 3. Рассмотреть каждую группу как n-разрядное двоичное число и записать ее соответствующей цифрой в системе счисления с основанием q=2n Пример 11. Число 111100101, 01112 переведем в восьмеричную систему счисления. Разбиваем целую и дробную части числа на триады и под каждой из них записываем соответствующую восьмеричную цифру:
Пример 12. Число 11101001000, 110100102 переведем в шестнадцатеричную систему счисления. Разбиваем целую и дробную части числа на тетрады и под каждой из них записываем соответствующую шестнадцатеричную цифру:
Перевод чисел из систем счисления с основанием q=2n в двоичную систему. Для того, чтобы произвольное число, записанное в системе счисления с основанием q=2n, перевести в двоичную систему счисления, нужно каждую цифру этого числа заменить ее n-значным эквивалентом в двоичной системе счисления. Пример 13. Переведем шестнадцатеричное число 4АС3516 в двоичную систему счисления.
Получаем: 10010101100001101012
|