![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Доказательство теоремы отсчетов ⇐ ПредыдущаяСтр 2 из 2
Непрерывный входной сигнал может быть преобразован в последовательность дискретных значений, если с помощью элемента выборки-хранения через равные интервалы в моменты времени ti = Т0× i брать значения входного сигнала. Здесь f0 = 1/T0 – частота выборки. Из рис. 1.13, а, видно, что соответствующая ступенчатая функция тем ближе к непрерывной входной функции, чем меньше период выборки. Следовательно, увеличивая частоту выборки, можно обеспечить требуемую точность воспроизведения. Однако часто реализовать высокую частоту выборки оказывается затруднительно.
Из теоремы отсчетов следует, что можно преобразовать входную функцию с помощью выборок, которые производятся на относительно низкой частоте, а затем получить сигнал, близкий к первоначальному, используя соответствующие фильтры. Для этого нужно сделать допущение, что входная функция u(t) имеет ограниченную полосу, т.е. ее спектр U(jf) для частот свыше fm мало отличается от нуля. Это условие для входного сигнала можно выполнить, пропустив предварительно сигнал через фильтр нижних частот. При этом сигнал не будет заметно искажаться. Ступенчатую функцию, показанную на рис. 1.13, а, трудно представить в аналитической форме. Как показано на рис. 1.13, б, ее можно заменить последовательностью импульсов Дирака с той же вольтсекундной площадью: В Для доказательства теоремы отсчетов рассмотрим функцию u(t) с преобразованием Фурье U(jw) (или U(jf)). Причем U(jf) =0 при | f |> fm, т.е. спектр сигнала ограничен по частоте. Рассмотрим также дополнительную функцию – периодический спектр Uп(jf) с периодом f0, совпадающий с исходным спектром U(jf) на интервале частот -f0/2< f < +f0/2 (см. рис. 1.15). Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение Периодическая функция частоты f Uп(jf) с периодом f0 может быть представлена в виде ряда Фурье в комплексной форме: с коэффициентами: Представим выражение для дискретизируемого сигнала во временной области u(t) через его частотный спектр U(jf) c помощью обратного преобразования Фурье (напомним, что U(jf) =0 при | f | > fm, т.е. максимальная частота в спектре дискретизируемого сигнала fm): Полагая t=kT0, получаем выражение для определения выборок функции u(t), разделенных интервалами длиной T0: Сравнивая выражения (1.19) и (1.21), получаем коэффициенты периодически продолженного спектра: Следовательно, если мы знаем значения сигнала u(t) в равноотстоящие моменты времени kT0 для k =0…+¥, то ряд Фурье периодически продолженного спектра Uп(jf) однозначно определяется этими выборками. Как следует из (1.22) для реальных электрических сигналов Dk =0 для k > 0. В соответствии с этим выражения (1.18) и (1.19) преобразуются к нижеприведенному уточненному виду при Покажем также, что при выборе частоты отсчетов f0 ³ 2fm, можно найти выражение для восстановления непрерывного аналогового сигнала по его выборкам. На интервале частот (- f0 /2, f0 /2) сигнал u(t) через спектр выражается в виде:
|