Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Дискретизация непрерывных сигналов по времени






    При использовании цифровой обработки сигнала (ЦОС) вместо непрерывной величины обрабатывается дискретная цифровая последовательность. При переходе от аналоговой формы представления информации к цифровой необходимо в первую очередь решить вопрос:

    Как без потери информации представить непрерывное входное напряжение числовой последовательностью в виде отдельных отсчетов (дискрет)?

    В основе дискретизации непрерывных сигналов лежит принципиальная возможность представления их в виде взвешенных сумм

    где ап некоторые коэффициенты или отсчеты, характеризующие исходный сигнал в дискретные моменты времени; fn(t) — набор элементарных функций, используемых для восстановлении сигнала по его отсчетам (рис. 1.12).

    Многочисленные системы дискретного представления непрерывных сигналов можно разделить на системы, использующие постоянный период дискретизации (равномерная дискретизация) и переменный (адаптивная дискретизация).

    Наиболее распространенной формой дискретизации является равномерная, в основе которой лежит теорема отсчетов (или теорема Котельникова–Найквиста):

    Всякий непрерывный сигнал, имеющий ограниченный частотный спектр, полностью определяется своими дискретными значениями в моменты отсчета, отстоящими друг от друга на интервалы времени не более Dt=1/2Fmax, где Fmax– максимальная частота в спектре сигнала.

    Согласно этой теореме, в качестве коэффициентов аn необходимо использовать мгновенные значения сигнала x(tn) в дискретные моменты времени tn = nDt, а период дискретизации выбирать из условия

    D t£ 1/2Fmax (1.15)

    где Fm максимальная частота спектра исходного сигнала.






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.