Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Активность персонала в зависимости от статуса работника
(если данные представительны) можно подсчитать процентные доли всех 47 выделенных в ней сочетаний возрастных характеристик мужей и жен, из чего, скажем, следует, что более всего в изученной совокупности представлены молодые пары в возрасте 20—24 лет, каковые составляют около 55% от всех пар (504: 1838/2= =0, 55), среди 50-летних и старше супружеские пары одного возраста составляют лишь 5% и т. д. Если выборка нерепрезентативна, процентирование можно вести только в рамках каждой подвыборки раздельно. Обычно такие подвыборки образуют по признакам, являющимся возможными причинами искомых связей: половозрастные, имущественные, этнической принадлежности, шкалы по уровню образования, другим объективным характеристикам социального статуса, места проживания и т. д. Здесь несоответствие долей выборок реальному распределению определенных групп в генеральной совокупности не исказит вывод (логика табл. 10, а). В противном же случае (по логике табл. 10, б) достоверность вывода будет прямо зависеть от представительности выборки.
Наконец, в случаях, когда представительность перекрестной классификации в принципе нельзя установить (например, о ценностных ориентациях и политических взглядах, отношений к партиям, где распределение в генеральной совокупности заранее вообще неизвестно), расчет процентов допустим в обоих направлениях и по диагонали с условием, что установленные связи требуют дополнительной проверки, ориентировочны. Для такой проверки используют систему так называемых контрольных (опосредующих) переменных. Анализ взаимосвязи двух переменных с помощью контрольного (опосредующего) фактора — прием, используемый для того, чтобы установить прямые и опосредованные, причинные и сопутствующие связи, а также уточнить их напряженность. Рассмотрим три вымышленных примера, в которых проиллюстрируем основные логические проблемы этого метода.8 8 Задачи этого класса применительно к социологии были впервые сформулированы в 40-е гг. П. Лааарсфел ьдом и П. Кен дал л и получили в дальнейшем более полное логическое обоснование в работах X. Хеймана [339. С. 286—295]. Пример 1. Надо определить, имеется ли связь между интересом людей к познавательным программам телевидения (обозначим как фактор П) и к развлекательным программам (фактор Р). Для установления взаимосвязи между этими явлениями используем простейший показатель — коэффициент ассоциации двух качественных переменных по Юлу. Чтобы подсчитать коэффициент ассоциации Юла, достаточно фиксировать наличие (+) или отсутствие (-) каждого из двух сопоставляемых качеств А к В. Построим двухмерную классификационную таблицу (схема 27). Коэффициент ассоциации Юла (Q) высчитывается по формуле; Q=(ad - cb)/(ad - сb), где (схема 25) частоты а, b, с, d обозначают наличие или отсутствие признака П или Р. Свойства коэффициента: 1> Q> -1; Q=0, если какая-либо из частот (а, b, с или d) равны 0. При значении коэффициента существенно выше или ниже 0 при некотором доверительном интервале (допустимой ошибке) связь имеется. Допустим, что в нашем примере наблюдается такое распределение (условные числа).
|