Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Движение как иллюзия






 

В предыдущей главе мы вывели принцип неопределенности Гейзенберга из размышлений над определенным исходным расположением циферблатов в небольшой области. Часы имели стрелки одинакового размера, указывавшие в одинаковом направлении. Мы выяснили, что это отображает частицу, которая находится в относительно стационарном состоянии, хотя квантовые законы предполагают, что она все же совершает некие перемещения. Сейчас мы зададим другую первоначальную конфигурацию, чтобы описать частицу в движении.

На рис. 5.1 новое сочетание циферблатов. Это по‑ прежнему группа циферблатов, соответствующая частице, первоначально расположенной вблизи от них. Стрелка в положении 1 указывает на 12, как и ранее, но все остальные стрелки в поле повернуты и показывают другое время. На этот раз мы нарисовали пять часов просто потому, что так рассуждения будут более наглядными, хотя мы по‑ прежнему должны представить циферблаты и между точками, где размещаются те, что мы нарисовали: по одному циферблату для каждой точки в области. Применим, как и ранее, правило квантовой теории и переместим эти циферблаты в точку Х, находящуюся далеко от исходной группы, чтобы вновь описать то множество траекторий, по которым частица может переместиться из этой группы в точку Х.

 

Рис. 5.1. Исходная группа (которую иллюстрируют циферблаты 1–5) состоит из часов, показывающих разное время – стрелки каждых последующих сдвинуты на три часа вперед по отношению к предыдущим. Нижняя часть рисунка демонстрирует, как отличается время на часах по всей группе

 

Повторим уже ставшую, надеемся, стандартной процедуру: возьмем циферблат из точки 1 и переместим в точку Х, поворачивая стрелку в процессе этого перемещения. Она повернется на величину

 

 

Теперь возьмем циферблат из точки 2 и переместим в точку Х. Расстояние будет немного больше – допустим, что больше на d, и потребуется чуть больше повернуть стрелку:

 

 

Именно это мы и делали в предыдущей главе, но, возможно, вы уже заметили, что для новой начальной конфигурации циферблатов результат будет не совсем тем же, что в прошлый раз. Новая установка стрелок отличается тем, что циферблат 2 изначально показывает время на три часа вперед по сравнению с циферблатом 1: 3 часа, а не 12. Но при переносе циферблата 2 в точку Х мы должны повернуть стрелку назад чуть больше, чем на циферблате 1, в соответствии с тем дополнительным расстоянием d, которое он должен покрыть. Если построить исходную ситуацию так, что начальное опережение показаний циферблата 2 будет точно таким же, как дополнительный поворот стрелки в процессе движения в точку Х, то циферблат 2 прибудет в точку Х, показывая точно такое же время, как циферблат 1. Это будет означать, что произойдет не отмена, а суммирование циферблатов и создастся новый циферблат бо́ льших размеров, что, в свою очередь, означает наличие высокой вероятности нахождения частицы в точке Х. Это совершенно не похоже на ту неконтролируемую квантовую интерференцию, случившуюся, когда все наши циферблаты показывали одинаковое время. Сейчас рассмотрим циферблат 3, который мы повернули на 6 часов вперед по сравнению с циферблатом 1. Этот циферблат должен пройти дополнительное расстояние 2 d до точки Х, и снова из‑ за смещения стрелки этот циферблат в точке прибытия будет показывать 12 часов. Если задать все смещения стрелок подобным образом, то же самое будет происходить по всей группе, так что все циферблаты в точке Х будут суммироваться.

Это значит, что вероятность нахождения частицы в точке Х в какое‑ то более позднее время будет достаточно высокой. Точка Х отличается от других, потому что именно в ней все циферблаты из исходной группы, словно сговорившись, покажут одно и то же время. Но точка Х – не единственная из имеющих особенный характер: все точки слева от Х на расстоянии, равном размеру исходной группы, обладают тем же свойством: циферблаты в них тоже складываются с положительным результатом. Чтобы увидеть это, заметьте, что можно взять циферблат 2 и переместить его в точку на расстоянии d слева от Х. Это будет соответствовать перемещению циферблата на расстояние x, а это то же самое расстояние, на которое мы переместили циферблат 1 по направлению к точке Х. После этого можно переместить циферблат 3 в эту новую точку на расстояние x + d, что будет тем же самым расстоянием, на которое мы до того переместили циферблат 2. Эти два циферблата, следовательно, тоже должны показывать одно и то же время в точке прибытия и суммироваться. Мы можем продолжать делать то же самое для всех циферблатов в исходной группе, но только до тех пор, пока расстояние слева от Х не станет равно размеру исходной группы. За пределами этой особой области циферблаты в основном будут отменять друг друга, потому что останутся без защиты от обычной неконтролируемой квантовой интерференции[15].

Истолкование этого эксперимента очевидно: группа циферблатов движется, как показывает рис. 5.2.

 

Рис. 5.2. Группа циферблатов с постоянной скоростью движется вправо. Это происходит потому, что в исходной группе стрелки циферблатов повернуты по отношению друг к другу так, как описано в тексте

 

Это удивительный результат. Задав начальную группу с помощью часов, показывающих разное, а не одинаковое время, мы пришли к описанию движущейся частицы. Интересно, что мы можем установить очень важную связь между часами со сдвинутыми стрелками и поведением волн.

Помните, что в главе 2 нам пришлось ввести идею циферблатов, чтобы объяснить волновое поведение частиц в двухщелевом эксперименте. Вернемся к рис. 3.3, где мы изобразили набор циферблатов, описывающий волну. Он напоминает набор циферблатов в нашей движущейся группе. Соответствующую волну мы изобразили под группой циферблатов на рис. 5.1, пользуясь совершенно теми же методами, что и ранее: 12 часов – пик волны, 6 часов – ее минимум, а 3 и 9 часов соответствуют нулевой высоте волны.

Как мы могли предвидеть, представление движущейся частицы, видимо, имеет что‑ то общее с волной. У волны есть длина, соответствующая расстоянию между циферблатами с идентичными показаниями стрелок. Мы изобразили ее на рисунке, обозначив буквой λ.

Сейчас можно вычислить, насколько далеко точка Х должна располагаться от исходной группы, чтобы смежные циферблаты складывались с положительным значением. Это приводит нас к еще одному очень важному результату в квантовой механике и существенно проясняет связь между квантовыми частицами и волнами. Снова наступает момент, когда нам потребуется немного математики.

В первую очередь нужно вывести дополнительную величину, на которую повернута стрелка циферблата 2 по сравнению с циферблатом 1, поскольку дальше циферблат отправится в точку Х. С помощью результатов из начала главы находим, что

 

 

Вы можете сами произвести вычисления, раскрыв скобки и отбросив величину d ², поскольку d – расстояние между циферблатами, которое слишком мало по сравнению с x – расстоянием до точки Х, лежащей очень далеко от исходной области.

Довольно несложно записать критерий и для циферблатов, показывающих одно и то же время; нам нужно еще немного подвести стрелки, чтобы при продвижении циферблата 2 это исходное смещение показаний часов полностью компенсировало дополнительный поворот стрелки в ходе перемещения циферблата. Для примера, показанного на рис. 5.1, циферблат 2 дополнительно переводится на ¼, потому что мы должны будем повернуть стрелку на четверть часа вперед. Точно так же циферблат 3 подводится на ½, потому что мы должны будем повернуть стрелку вперед на полчаса. Символически выразить долю полного оборота в виде d / λ, где d – расстояние между циферблатами, а λ – длина волны.

Если вы этого пока не улавливаете, рассмотрите случай, при котором расстояние между двумя циферблатами будет равняться длине волны. Тогда d = λ, а, следовательно, d / λ = 1, что соответствует одному полному обороту, при этом оба циферблата покажут одинаковое время.

Подытожим: чтобы два соседних циферблата показывали в точке Х одинаковое время, требуется, чтобы дополнительный поворот часовой стрелки в начальном положении равнялся дополнительному повороту часовой стрелки при распространении волны на расстояние:

 

 

Как и выше, можем упростить это выражение, отметив, что mx / t – это импульс частицы, p. После небольших преобразований уравнения получим:

 

 

Полученный результат настолько важен, что заслуживает собственного имени. И действительно, эта формула называется уравнением де Бройля, поскольку впервые в сентябре 1923 года ее предложил французский физик Луи де Бройль. Важность формулы в том, что она связывает длину волны с известным импульсом частицы. Иными словами, так проявляется тесная связь между свойством, обычно присутствующим у частиц – импульсом, и свойством, чаще всего ассоциирующимся с волнами, – длиной волны. Таким образом, из наших манипуляций с часами возник корпускулярно‑ волновой дуализм квантовой механики.

Уравнение де Бройля ознаменовало огромный концептуальный скачок. В своей оригинальной работе он писал, что «воображаемая связанная волна» должна приписываться всем частицам, в том числе электронам, и что поток электронов, проходя через щель, «должен демонстрировать феномен дифракции»[16]. В 1923 году это были еще теоретические рассуждения, потому что Дэвиссон и Джермер обнаружили появление интерференционной фигуры при испускании пучков электронов только в 1927‑ м. Эйнштейн сделал примерно то же предположение, что и де Бройль, на других основаниях и приблизительно в это же время. Эти два теоретических результата стали катализатором для развития волновой механики Шрёдингера. В работе, вслед за которой Шрёдингер уже опубликовал уравнение своего имени, он писал: «Нам приходится серьезно отнестись к волновой теории де Бройля – Эйнштейна о движении частиц».

Мы можем подробнее разобраться с уравнением де Бройля и посмотреть, что произойдет, если уменьшить длину волны, что будет соответствовать большему смещению часовой стрелки соседних циферблатов. Иными словами, сократим расстояние между циферблатами, показывающими одно и то же время. Это значит, что нужно увеличить расстояние x, чтoбы компенсировать сокращение λ, – то есть для погашения дополнительной подкрутки стрелок точка Х должна оказаться дальше. Это соответствует более быстрому движению частицы: чем меньше длина волны, тем больше импульс, о чем и говорит уравнение де Бройля. Отличный результат: нам удалось «вывести» обычное движение (потому что со временем группа циферблатов движется равномерно), начав со статичного ряда циферблатов.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.