Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






W 3− W 1 < один оборот.






 

Если записать это полностью, мы получим

 

 

Рассмотрим конкретный случай, в котором размер области Δ x будет много меньше расстояния x. Это значит, что мы исследуем условия, при которых частица совершит скачок значительно больший, чем диаметр ее исходной области. В этом случае условие, при котором циферблаты не отменяют друг друга, выводится непосредственно из предыдущего неравенства и выглядит как

 

 

Если вы немного знаете математику, то поймете, как это получается – с помощью перемножения членов в скобках и пренебрежения той частью, которая включает в себя (Δ x) ². Это можно сделать, потому что по условиям Δ x по сравнению с x – величина очень малая, а малая величина в квадрате – это очень малая величина.

Это уравнение заключает в себе условие, при котором циферблаты в точке Х не отменяют друг друга. Мы знаем, что если циферблаты не аннулируются взаимно в определенной точке, то существуют хорошие шансы обнаружить в этой точке частицу. Итак, мы выяснили, что если частица изначально расположена внутри области размером Δ x, то через время t существуют хорошие шансы найти ее на значительном расстоянии x от поля, если неравенство выше будет выполнено. Более того, это расстояние увеличивается со временем, потому что в формуле мы на время t делим. Иными словами, чем больше времени проходит, тем выше вероятность нахождения частицы довольно далеко от ее исходного положения. Тут мы начинаем подозревать, что частица все‑ таки двигается. Заметьте также, что шансы нахождения частицы вдалеке от исходной точки увеличиваются, если Δ x уменьшается – то есть если неопределенность исходного положения частицы становится меньше. Иными словами, чем более точно мы улавливаем частицу, тем быстрее она удаляется от исходного положения. Теперь это уже очень напоминает принцип неопределенности Гейзенберга.

Напоследок давайте немного переформулируем наше неравенство. Заметьте: чтобы частица проделала путь из любой точки исходной области до точки Х за время t, она должна пройти расстояние x. Если вы действительно зарегистрировали частицу в точке X, то, разумеется, пришли к выводу, что частица передвигалась со скоростью x / t. Кроме того, напомним, что масса, умноженная на скорость частицы, есть ее импульс, поэтому величина mx / t – это измеренный нами импульс частицы. Теперь можно продвинуться еще дальше и вновь упростить неравенство, записав

 

 

где p – импульс. Можно переформулировать уравнение так, что оно примет вид

 

 

pΔ x < h,

 

и это действительно заслуживает дальнейшего обсуждения, потому что данное уравнение уже очень сильно напоминает принцип неопределенности Гейзенберга.

Итак, наши математические расчеты пока окончены, и, если вы не очень пристально следили за ними, вам следует ухватить нить рассуждений с этого момента.

Если начать с частицы, находящейся внутри связной области размером Δ x, то, как мы установили, с течением времени она может оказаться где угодно внутри более крупной области размером x.

Эта ситуация показана на рис. 4.5. Точнее говоря, это значит, что, если бы мы искали частицу в начальный момент, были бы шансы найти ее где‑ то во внутренней области. Если бы мы не стали проводить измерения, а решили подождать, высоки были бы шансы найти ее где‑ то во внешней, более крупной связной области. Это значит, что частица могла перейти из точки внутри малой начальной области в точку внутри более крупной. Однако она не обязана была двигаться, так что до сих пор есть вероятность нахождения ее в меньшей области Δ x. Но вполне возможно, что измерения покажут, что частица дошла как раз до края большой области[14]. Если бы этот предельный случай был реализован при измерении, то мы заключили бы, что частица движется с импульсом, который задается только что выведенным нами уравнением (если вы не следовали за нашими математическими рассуждениями, просто примите это на веру), то есть p = h / Δ x.

 

Рис. 4.5. Небольшая область со временем растет, в то время как изначально локализованная там частица с течением времени делокализуется

 

Теперь можем опять начать сначала и вернуть все в исходное положение. Частица опять окажется в малой области размера Δ x. После измерения мы, вероятно, найдем частицу в какой‑ то другой точке внутри более крупной области, до границы, и таким образом придем к выводу, что ее импульс меньше предельного значения.

Если мы представим, что вновь и вновь повторяем этот эксперимент, измеряя импульс частицы, которая первоначально находится внутри небольшой области размером Δ x, мы обычно будем получать при измерении множество значений p где‑ то между нулем и предельным значением h / Δ x. Фраза «если проделать этот эксперимент несколько раз, то можно предсказать, что измеренный импульс окажется в пределах между нулем и h / Δ x» значит, что «импульс частицы имеет неопределенность h / Δ x». Как и в случае с неопределенностью положения, физики ввели для неопределенности этого рода символ Δ p и пишут, что Δ pΔ x ~ h. Значок ~ обозначает, что произведение неопределенностей положения и импульса примерно равно постоянной Планка – оно может быть или немного больше, или немного меньше. Немного углубившись в математику, можно сделать это уравнение еще более точным. Результат будет зависеть от подробностей расположения первоначальной группы циферблатов, но не стоит тратить на него слишком много сил и времени, потому что уже сделанного достаточно, чтобы понять основные идеи.

Утверждение, что неопределенность положения частицы, умноженная на неопределенность ее импульса (приблизительно), равна постоянной Планка – возможно, самая известная формулировка принципа неопределенности Гейзенберга. Эта формулировка гласит: если мы знаем, что частица находится в какой‑ то исходный момент времени в какой‑ то области, то измерение положения частицы в какой‑ то более поздний момент времени покажет, что частица движется с импульсом, значение которого нельзя предсказать точнее, чем «нечто между нулем и h / Δ x». Иными словами, если мы будем все больше и больше сужать начальную область нахождения частицы, она будет стремиться отпрыгнуть от этой области все дальше. Это настолько важно, что заслуживает третьего варианта формулировки: чем точнее вы знаете положение частицы в какой‑ то момент, тем хуже будете знать скорость ее движения и, соответственно, ту точку, в которой она окажется позже.

Эта формулировка принципа неопределенности как раз и принадлежит Гейзенбергу. Она лежит в основе квантовой теории, но тут мы должны четко заявить, что сам по себе принцип вовсе не является неопределенным. Это утверждение о нашей неспособности точного отслеживания частицы, и здесь не больше места для квантового волшебства, чем в ньютоновой физике. На последних нескольких страницах мы вывели принцип неопределенности Гейзенберга из фундаментальных правил квантовой физики, которые соответствуют правилам хода часов, сложения и вычитания циферблатов. И действительно, его происхождение кроется в нашем допущении, что частица через мгновение после измерения ее положения может оказаться в любом другом месте Вселенной. Диковатость нашего первого предположения, что частица может оказаться в совершенно произвольном месте Вселенной, была приручена с помощью неконтролируемой квантовой интерференции, и принцип неопределенности – это в каком‑ то смысле все, что осталось от исходной анархии.

Прежде чем двинуться дальше, мы должны сказать еще нечто очень важное об интерпретации принципа неопределенности. Не следует впадать в заблуждение, думая, что частица находится в каком‑ то конкретном единственном месте и что распространение исходных циферблатов отражает лишь ограниченность нашего понимания. Если мы считаем, что не можем правильно вывести принцип неопределенности, потому что не можем признать необходимость рассматривать все циферблаты из всех точек внутри исходной области, можно перемещать их по очереди в отдаленную точку Х и потом складывать. Именно делая это, мы и получили наш результат, то есть нам пришлось предположить, что частица прибывает в Х через суперпозицию многих возможных маршрутов.

Принципом Гейзенберга мы чуть позже воспользуемся для иллюстрации некоторых примеров из реального мира. Сейчас же достаточно и того, что нам удалось вывести один из ключевых результатов квантовой теории, не пользуясь ничем другим, кроме простых манипуляций с воображаемыми циферблатами.

Подставим в уравнения несколько цифр, чтобы добиться лучшего понимания предмета. Сколько нужно ждать возникновения существенной вероятности, что песчинка выпрыгнет из спичечного коробка? Предположим, что спичечный коробок имеет стенки длиной 3 см, а песчинка весит 1 мкг. Напомним, что условие для появления существенной вероятности перемещения песчинки на заданное расстояние определяется неравенством

 

 

где Δ x – размер коробка. Теперь подсчитаем, каким должно быть время t, если мы хотим, чтобы песчинка покрыла расстояние x = 4 см, что уверенно превосходит размеры спичечного коробка. С помощью очень несложной алгебры находим, что

 

 

после чего подставляем числа и обнаруживаем, что t должно быть больше, чем примерно 1021 секунд. Это около 6 × 1013 лет, то есть в 1000 раз больше возраста Вселенной. Так что, вероятно, этого не случится. Квантовая механика – странная штука, но не настолько странная, чтобы песчинка сама по себе выпрыгивала из спичечного коробка.

Завершая эту главу и переходя к следующей, сделаем еще одно, последнее наблюдение. Наш вывод принципа неопределенности основывался на конфигурации часов, показанной на рис. 4.4. Если говорить точнее, то мы установили исходную группу часов так, чтобы все стрелки были одинаковой длины и показывали одно и то же время. Это соответствует частице, находящейся в начальном состоянии покоя в определенной области пространства, – как, например, песчинка в спичечной коробке. Хотя мы выяснили, что частица, скорее всего, не будет пребывать в покое, мы также обнаружили, что для больших объектов – а для квантового мира песчинка действительно очень велика – это движение совершенно незаметно. Таким образом, какое‑ то движение в нашей теории есть, но это движение неощутимо для достаточно больших объектов. Похоже, мы упускаем из виду что‑ то важное, потому что крупные предметы на самом‑ то деле движутся, а квантовая теория, как мы помним, – это теория и малых, и больших объектов. Теперь мы должны обратиться к новой проблеме: как объяснить движение?

 

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.