Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Задача двох тіл.






    Рассмотрим задачу о движении двух взаимодействующих толь­ко между собой материальных точек. Вследствие однородности и изотропности пространства потенциальная энергия взаимодей­ствия может зависеть только от расстояния между точками. Функ­ция Лагранжа для данной задачи запишется в форме

    (4.1)

    Рассматриваемая система материальных точек замкнута. Поэтому ее импульс сохраняется, и система отсчета центра инерции являет­ся инерциальной системой отсчета. Задачу будем решать в систе­ме отсчета центра инерции. Начало координат поместим в центр инерции, что дает

    (4.2)

    Введем радиус-вектор , направленный от первой материальной точки ко второй:

    (4.3). С помощью формул (4.2) и (4.3) выразим векторы и через вектор : ; (4.4)

    Потенциальная энергия теперь зависит только от величины век­тора . Выражая с помощью формул (4.4) скорости и через вектор , кинетическую энергию системы двух материальных точек можно записать как кинетическую энергию одной матери­альной точки массой

    (4.5)

    Выраженная через радиус-вектор функция Лагранжа (4.1) запи­шется в форме

    (4.6)

    Функция Лагранжа (4.6) — это функция Лагранжа одной мате­риальной точки массы , движущейся в потенциальном поле, за­висящем только от расстояния до начала координат. Такое потен­циальное поле называется Центральным полем. Сила, действую­щая в центральном поле на материальную точку, направлена по прямой, соединяющей материальную точку с центром поля:

    (4.7)

    Масса , определенная согласно (4.5), называется Приведенной массой. Следовательно, решение задачи двух тел эквивалентно решению задачи о движении в центральном поле материальной точки с массой, равной приведенной массе. После решения задачи о движении материальной точки в центральном поле, координаты двух тел можно получить при помощи формул (4.4).







    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.