Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Как продвинуть сайт на первые места?
    Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
    Ускорение продвижения
    Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
    Начать продвижение сайта

Векторная топологическая модель






Векторная топологическая модель обязана своим происхождением задаче описания полигональных объектов. Ее называют еще линейно-узловой моделью. С ней связаны и особые термины, отражающие ее структуру; главные ее элементы (примитивы):

 

· промежуточная точка;

 

· сегмент (линейный сегмент, отрезок (прямой));

 

· узел;

 

· дуга;

 

· полигон (область, полигональный объект, многоугольник, контур, контурный объект), в том числе:

 

1. простой полигон;

 

2. внутренний полигон («остров», анклав);

 

3. составной полигон;

 

4. универсальный полигон (внешняя область).

 

Вотличие от спагетти-модели, топологические модели (Рис.2.2), содержат топологическую информацию в явном виде. Для поддержки продвинутых аналитических методов нужно внести в компьютер как можно больше явной топологической информации. Подобно тому, как математический сопроцессор объединяет многие специализированные математические операции, так и топологическая модель данных объединяет решения некоторых из наиболее часто используемых в географическом анализе функций. Это обеспечивается включением в структуру данных информации о смежности для устранения необходимости определения ее при выполнении многих операций.

 

Топологическая информация описывается набором узлов и дуг.

 

Узел (node) -больше, чем просто точка, обычно это пересечение двух илиболее дуг, и его номер используется для ссылки на любую дугу, которой он принадлежит.

 

Каждая дуга (arc) начинается и заканчивается либо в точке пересечения с другой дугой, либо в узле, не принадлежащем другим дугам.

 

Дуги образуются последовательностями отрезков, соединенных промежуточными (формообразующими) точками. В этом случае каждая линия имеет два набора чисел: пары координат промежуточных точек и номера узлов. Кроме того, каждая дуга имеет свой идентификационный номер, который используется для указания того, какие узлы представляет ее начало и конец.

 

Области, ограниченные дугами, также имеют идентифицирующие ихкоды, которые используются для определения их отношений с дугами. Далее, каждая дуга содержит явную информацию о номерах областей слева и справа от


 

нее, что позволяет находить смежные области. Эта особенность данной модели позволяет компьютеру знать действительные отношения между графическими объектами.

 

 

Рисунок 2.2 Топологическая векторная модель данных

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.