Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Плоскорадиальный фильтрационный потокСтр 1 из 2Следующая ⇒
Фильтрационный поток называется плоскорадиальным, когда прямолинейные траектории частиц жидкости, расположенные в горизонтальных плоскостях, являются радиально сходящимися в одной точке каждой плоскости. Практическим примером такого фильтрационного потока является приток жидкости к одиночной вертикальной скважине, вскрывающей горизонтальный пласт неограниченного простирания на всю его толщину h = const.(рис.9) Схемы линий тока в любой горизонтальной плоскости потока будут идентичными, поэтому для исследования рассматриваем движение жидкости в одной горизонтальной плоскости. При установившемся движении жидкости давление Р и скорость фильтрации V в любой точке М зависят только от расстояния r данной точки до оси скважины; поэтому этот поток является всего лишь другим видом одномерного фильтрационного потока. Решая задачу о притоке несжимаемой жидкости к одиночной скважине, расположенной в центре кругового пласта, используем исходное дифференциальное уравнение фильтрации (3.3), которое в этом случае имеет вид . (3.17) Можно упростить уравнение (3.17), если представить его в полярных координатах r и j. В данном случае вследствие осевой симметрии характеристики потока не зависят от угла j и являются функциями только координаты r. Мы исключаем формальное преобразование координат путем рассмотрения схемы течения в трубке тока переменного сечения (рис. 10). Рис.10. w(S) = w(r) = jrh; так как r = R-S, поэтому dS = -dr.
|