Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Плоскорадиальный фильтрационный поток






    Фильтрационный поток называется плоскорадиальным, когда прямолинейные траектории частиц жидкости, расположенные в горизонтальных плоскостях, являются радиально сходящимися в одной точке каждой плоскости.

    Практическим примером такого фильтрационного потока является приток жидкости к одиночной вертикальной скважине, вскрывающей горизонтальный пласт неограниченного простирания на всю его толщину h = const.(рис.9)


    Рис.9

    Схемы линий тока в любой горизонтальной плоскости потока будут идентичными, поэтому для исследования рассматриваем движение жидкости в одной горизонтальной плоскости. При установившемся движении жидкости давление Р и скорость фильтрации V в любой точке М зависят только от расстояния r данной точки до оси скважины; поэтому этот поток является всего лишь другим видом одномерного фильтрационного потока.

    Решая задачу о притоке несжимаемой жидкости к одиночной скважине, расположенной в центре кругового пласта, используем исходное дифференциальное уравнение фильтрации (3.3), которое в этом случае имеет вид

    . (3.17)

    Можно упростить уравнение (3.17), если представить его в полярных координатах r и j. В данном случае вследствие осевой симметрии характеристики потока не зависят от угла j и являются функциями только координаты r. Мы исключаем формальное преобразование координат путем рассмотрения схемы течения в трубке тока переменного сечения (рис. 10).

     
     

    Рис.10.

    w(S) = w(r) = jrh; так как r = R-S, поэтому dS = -dr.






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.