Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Amp;КЛЮЧЕВЫЕ ТЕРМИНЫ. Землетрясения, извержения вулканов, катастрофа, оползни, сели, обвалы, литосфера, очаг, магнитуда, форшоки, интенсивность, балл






 

5.1. Землетрясения

 

Землетрясения – едва ли не самые страшные и губительные природные катастрофы. Действию землетрясений подвержено более 10 % суши, на которой проживает половина человечества. Они уносят десятки и сотни тысячи человеческих жизней, вызывают опустошительные разрушения на огромных пространствах.

В августе 1999 г. землетрясение на северо-западе Турции было эквивалентно подрыву 20 млн т тротила всего за 37 секунд. 7 декабря 1988 года в Армении произошло Спитакское землетрясение, полностью стершее этот город с лица Земли. Тогда за несколько секунд погибло более 25 000 человек. Ашхабадское землетрясение в ночь с 5 по 6 октября 1948 г. унесло более 100 000 жизней. В Китае в 1920 г. погибло 200 000 человек, а в 1923 г. и 2011 г. Японии – более 100 000 и 11 000. Этот скорбный список можно продолжать бесконечно (рис. 20). Землетрясения разной силы и в разных районах земного шара происходят постоянно.

В год в среднем на планете происходит около 18 значительных землетрясений силой 7–8 балла и одно сильное – 8 баллов. В 1999 г. таких землетрясений было 20.

 

 

 

Рис. 20. Людские потери при землетрясении в мире в XX в., тыс. человек

(по данным А. В. Балахонова, 2005)

 

Ученые разных стран изучают: а) причины возникновения землетрясений; б) методы прогноза в трех измерениях – в пространстве, во времени и интенсивности – где (местоположение), когда (время), какой силы (интенсивность) можно ожидать опасные «вспышки» стихии. К сожалению, непосредственно предсказать время землетрясений пока еще не удается.

 

5.1.1. Основные понятия

 

Землетрясением (от греч. seismes – трясение) называется колебание (или толчки) земной коры, вызванное внезапным освобождение потенциальной энергии земных недр в виде упругих продольных и поперечных волн, которые распространяются во всех направлениях.

Землетрясение протекает неожиданно, быстро, нанося значительные разрушения. Количество выделяемой энергии самого крупного землетрясения в 1000 раз превосходит энергий взрыва атомной бомбы и сопоставимо со взрывом водородной бомбы (рис.21.).

К основным характеристикам землетрясений относятся:

1. Очаг землетрясения (гипоцентр);

2. Интенсивность сейсмических колебаний грунта.

3. Магнитуда землетрясения (сила землетрясения);

4. Сейсмические волны, возникающие при землетрясении.

 

 

Рис. 21. Выделение энергии при землетрясениях разной силы

(по Н. В. Короновскому, 2003)

 

1. Очаг – это пространство (объём), внутри которого заключены все сопровождающие землетрясение первичные деформации. Гипоцентром или фокусом землетрясения называют условный центр очага на глубине, а эпицентром – проекцию гипоцентра на поверхность Земли (рис. 22). Зона сильных колебаний и значительных разрушений сооружений при землетрясении называется плейстосейстовой областью. Чаще всего очаги землетрясений сосредоточены в земной коре на глубине 10–30 км.

Рис. 22. Очаг землетрясения и распространение сотрясений в объеме породы (по Н. В. Короновскому и др., 2003): I – область очага, или гипоцентр; II – проекция гипоцентра на поверхность Земли – эпицентр. Линии изосейст на поверхности – линии равных сотрясений в баллах (8–4)

 

Как правило, основному подземному сейсмическому удару предшествуют локальные толчки – форшоки. Сейсмические толчки, возникающие после главного удара – афтершоки.

По глубине очага различают землетрясения:

· неглубокие, h £ 70 км, в том числе приповерхностные (< 10 км);

· промежуточные, h = 70¸ 300 км;

· глубокие, h > 300 км (до 700 км).

2. Для количественной оценки силы землетрясений существуют различные показатели и шкалы. Часто масштабы проявления землетрясений оцениваются по интенсивности – внешнему сейсмическому эффекту (в баллах) на поверхности земли. Интенсивность выражается в определенном смещении грунтов, степени разрушения зданий, появлении трещин на поверхности и т.д. Как видим, что интенсивность толчка – это мера проявления колебаний и разрушений, вызванных землетрясением по мере удаления от очага. В России используется 12-балльная шкала интенсивности (МSК–64).

Вставка 4

I – III – слабые,

IV – V – ощутимые,

VI –VII – сильные (разрушаются ветхие постройки),

VIII – разрушительные (частично разрушаются прочные здания,

падают фабричные трубы),

IX – опустошительные (разрушается большинство зданий),

X – уничтожающие (разрушаются мосты, возникают оползни, обвалы),

XI – катастрофические (изменяется ландшафт),

XII – губительные катастрофы (изменение рельефа на обширной

территории).

Расшифровка абривиатуры этой шкалы соответствует начальным буквам фамилий ее создателей: С. В. Медведева, В. Шпонхойера и В. Карника, – и году ее принятия. В США и в ряде других стран принята предложенная итальянским сейсмологом Меркалли и позднее усовершенствованная шкала ММ. Значительно отличается шкала балльности, употребляемая в Японии (Болт, 1981). Все эти шкалы калибруют интенсивность сотрясений на поверхности Земли.

Шкала MSK-64 подразделяет землетрясения по интенсивности проявления на поверхности на 12 разрядов, японская – на восемь. Согласно шкале MSK-64 принята следующая градация интенсивности землетрясений (вставка 4).

Сейсмические колебания ощущаются отдельными людьми, находящимися в покое, при землетрясениях в один балл по японской шкале, два балла по шкале ММ и в три балла по шкале MSK-64; испуг и общая паника среди населения с возможными человеческими жертвами отмечаются при землетрясениях в пять баллов по японской шкале и восемь баллов по шкале ММ и MSK-64. Однако знаний интенсивности землетрясений на поверхности оказалось недостаточно.

3. Магнитуда землетрясения по Ч.Ф. Рихтеру (проф. Калифорнийского технологического института, США) также характеризует силу землетрясений по величине амплитуды волн от 0 до 9 по шкале Рихтера (см. ниже). Важно знать и величину энергии, излучаемой из очага. Для этого необходимо измерить на поверхности Земли энергию, приходящуюся на единицу площади, учесть поглощение энергии в пути и энергию, ушедшую во всех направлениях. Указанные определения чрезвычайно сложны, поэтому сейсмологи применяют условную энергетическую характеристику землетрясений, называемую магнитудой. Магнитуда – это единица, представляющая собой десятичный логарифм максимальной амплитуды колебаний сейсмографа (в тысячных долях мм), записанных в 100 км от эпицентра землетрясения. Магнитуда – мера высвобожденной при толчке энергии сейсмических волн. Она имеет единственное значение, так как характеризует конкретный очаг. Шкала магнитуд была впервые предложена американским сейсмологом Ч. Рихтером. Магнитуда землетрясений находится также в простой зависимости от частоты толчков – повышение интенсивности на единицу ведет приблизительно к десятикратному сокращению количества соответствующих землетрясений. Магнитуда (М) является наиболее универсальной и физически обоснованной характеристикой землетрясения.

Ч. Рихтер определил магнитуду толчка как безразмерную величину, определяемую выражением:

М = lg А max,

где А max – максимальная амплитуда колебаний на сейсмограмме в микрометрах, измеренная на расстоянии 100 км от эпицентра.

После появления высокочувствительных современных цифровых сейсмографов, позволяющих оценивать поток энергии сейсмических волн в широком частотном диапазоне. В этой шкале магнитуда М рассчитывается непосредственно по энергии подземного толчка Е (джоулей):

М = 2/3 lg Е – 3.

Классификация землетрясений по величине и мощности очага ведётся по шкале магнитуд. Верхней границей шкалы магнитуд принято считать значение М = 9, 5. Ему соответствует энергия толчка Е = 1019 Дж. Увеличению энергии толчка землетрясения примерно 30 раз соответствует увеличению магнитуды толчка на 1 единицу.

Сила землетрясений в различных частях земной поверхности неодинакова. Она прямо пропорциональна интенсивности первичного толчка,

т.е. интенсивности колебаний в гипоцентре, и обратно пропорциональна квадрату расстояния от центра землетрясения (Касахара, 1985). Сила землетрясений зависит также от свойств пород, через которые проходит сейсмическая волна. При прохождении через рыхлые породы и через породы с различными коэффициентами упругости сейсмическая волна ослабевает быстрее, чем когда она проходит по однородным скальным породам. Разрушительные 7–балльные колебания наблюдаются обычно при землетрясениях, начиная с магнитуды 5, 5 в районе эпицентра. При сильнейших землетрясениях с магнитудами восемь и выше они проявляются даже на расстояниях от эпицентра в 300–500 км. Чем ближе очаг землетрясения к поверхности, тем больше интенсивность колебаний в эпицентральном районе, но в тоже время она быстрее убывает с расстоянием. Не случайно землетрясения в Москве интенсивностью пять баллов наблюдались в тех случаях, когда их источниками были очаги в Карпатах на территории Румынии, расположенные на глубине 100 и более километров.

По оценкам сейсмологов, ежегодно на Земле происходит в среднем:

· 1 землетрясение с магнитудой от 8, 0;

· 10 землетрясений с магнитудой от 7, 0 до 7, 9;

· 100 землетрясений с магнитудой от 6, 0 до 6, 9;

· 1000 землетрясений с магнитудой от 5, 0 до 5, 9;

Спитакское катастрофическое землетрясение имело, например, магнитуду 6, 9, и 7–балльная зона охватила площадь в 4000 км2.

4. Сейсмические волны, возникающие при землетрясении. Известно, что до 10 % энергии, выделяющейся при землетрясении, превращается в энергию сейсмических волн. Они распространяются во все строны от гипоцентра землетрясения. Сейсмические волны могут быть двух типов – объёмные и поверхностные. В гипоцентре землетрясения зарождаются сейсмические волны объёмного типа – продольные и поперечные. По достижении земной поверхности они побуждают сейсмические волны поверхностного типа. В соответствии с двумя видами деформаций существует два вида волн: продольные волны (Р-волны) – это волны сжатия-растяжения, колебание которых осуществляется вдоль линии их распространения. Поперечные волны (S-волны) – волны сдвига; колебание волн сдвига происходит в плоскости, перпендикулярной линии распространения волны. Скорость продольных волн больше скорости поперечных (vp@1, 73 vs), в жидких и газообразных средах (m=0) поперечные волны отсутствуют. Запись сейсмических колебаний осуществляется сейсмостанциями, расположенными на поверхности Земли (рис. 25). Первыми от землетрясения на сейсмостанцию приходят продольные волны, затем поперечные и поверхностные. Последним соответствуют максимальные колебания почвы и именно они вызывают разрушения на поверхности Земли.

По сейсмическим данным определяют пространственные координаты, энергию и механизмы землетрясения.

 

На рисунке 25 показана глубина гипоцентра (h) и эпицентральное расстояние (D – расстояние от эпицентра до сейсмостанции). Глубина гипоцентра и эпицентральное расстояние определяются из выражения:

(ts - tp) . ,

где ts и tp – время прихода поперечной и продольной волн.

Для определения D и h необходимы наблюдения минимум на двух станциях.

 

 

5.1.2. Структурно-геологическая обусловленность землетрясений

 

Причиной возникновения землетрясений являются тектонические силы (напряжения) в земной коре, которые при освобождении сопровождаются разрывом и смещением твердого вещества в очаге (гипоцентре) и деформациями за пределами очага. Природа этих сил не совсем ясна, но несомненно, что их проявление обусловлено температурными неоднородностями в теле Земли – неоднородностями, возникающими благодаря потере тепла путем излучения в окружающее пространство, с одной стороны, и благодаря добавлению тепла от распада радиоактивных элементов, содержащихся в горных породах (Болт, 1981). Согласно теории упругой отдачи Рида земная кора во многих местах медленно смещается под действием глубинных сил. Дифференцированные движения вызывают упругие деформации, достигающие таких величин, которые породы уже не могут выдерживать. Тогда возникают разрывы, деформированный блок породы мгновенно смещается под действием упругих напряжений в положение, при котором деформация частично или полностью снимается. Это неравномерное продвижение дислокаций приводит к возникновению высокочастотных волн, проходящих через горные породы и вызывающих сейсмические колебания, которые и производят разрушения на поверхности. Таким образом возникают тектонические землетрясения. Все землетрясения приурочены к областям высокой современной тектонической активности и связаны либо с сжатием (конвергентая граница литосферной плиты), либо растяжением (дивергентная граница литосферной плиты).

Природа землетрясений остаётся в настоящее время неясной и нераскрытой. Причин, которые вызывают тектонические движения много. Вследствие высокой температуры внутри Земли вещество мантии не остаётся неизменным, оно переходит из одного состояния в другое за счёт мантийной конвекции, изменяется его объём. На тектонические движения в недрах земных оказывает влияние и сила тяжести. Более тяжёлые горные породы стремятся опуститься, более лёгкие – подняться.

В XIX веке профессор Н.П. Слигунов [ ], а позднее американский учёный Д. Симпсон [ ] обратили внимание на сильные магнитные возмущения, сопровождавшие многие катастрофические землетрясения того времени. При землетрясении в г. Ташкенте (1966 г.) было замечено свечение атмосферы над самым очагом. Очевидно, оно было связано с изменением электрического поля Земли. Установлено, что в годы, когда возрастает количество солнечных пятен на солнце, на Земле усиливается тектоническая деятельность. Магнитные бури, бушующие над Землёй, могут влиять на скорость её вращения и интенсивность теллурических токов в литосфере, что и приводит к нарастанию физических напряжений в земной коре. Грузинские учёные обнаружили, что самые сильные и разрушительные землетрясения в Закавказье совпадали с полнолунием.

Землетрясения могут возникать и по другим причинам. Одна из таких причин – вулканическая деятельность в местах, где раздвигаются тектонические плиты. Кроме этого, известны обвальные и техногенные землетрясения. Обвальные – это небольшие землетрясения, возникающие в районах, где есть подземные пустоты и горные выработки. Непосредственная причина колебания грунта заключается в обрушении кровли штолен или пещер. Часто наблюдаемая разновидность этого явления – горные удары. Они случаются, когда напряжения, возникающие вокруг горной выработки, заставляют большие массы горных пород резко со взрывом отделяться от массива, возбуждая сейсмические волны.

Последний тип землетрясений – это техногенные (искусственные), связанные исключительно с деятельностью человека. Взрывные, или как чаще их называют, наведенные землетрясения возникают при обычных или ядерных взрывах. Когда при взрыве на большой глубине взрывается ядерное устройство, то высвобождается огромное количество ядерной энергии. Отметим также, что наведенные землетрясения связаны не только с военной, но и с другой деятельностью человека.

5.1.3. Общие черты землетрясений в мире и на территории России

 

Тектонические землетрясения, с которыми часто пространственно совпадают и вулканические землетрясения, формируют сейсмические пояса на земном шаре.

География землетрясений носит закономерный характер и хорошо объясняется теорией тектоники литосферных плит. Наибольшее количество землетрясений связано с такими зонами, где плиты либо сталкиваются, либо расходятся и наращиваются за счет образований новой океанической коры. На платформах очагов землетрясений нет.

Самым мощным сейсмическим поясом, в котором происходят 80 % всех землетрясений земного шара, является Тихоокеанский океанский пояс или «Огненный пояс». Это зона подвига океанических плит: западное тихоокеанское кольцо, Индонезия, островные дуги (Курильская, Алеутская, Японская, Филиппинская, Ява, Суматра и т.д.), побережье Северной Америки, Карибский регион, Средиземноморье. Плиты, словно потрескавшийся лёд, покрывают полужидную мантию и приводятся в движение колоссальной тепловой энергией земного ядра. Здесь происходят самые мощные землетрясения, например, рекордное в мировой истории Великое чилийское (1960) магнитудой 9, 5 по шкале Рихтера и землетрясение в Кобе (1995 г.) унесшее 6433 человеческих жизней. Здесь же ежедневно регистрируются сотни «микроземлетрясений».

Другим районом высокой сейсмической активности считается Альпийско-Гималайский пояс, включающий 5–6 % всех землетрясений. Он протягивается от Средиземного моря, Гималаев (вставка 5), Памира, Тянь-Шань, Средняя Азия, пересекая территории Греции, Турции, Армении, Иран, Пакистан, Афганистан, побережье Алжира, достигая северной Индии. Это зоны столкновения литосферных плит с континентами.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.