Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Сортировка вставками. Сортировка вставками – простой алгоритм сортировки, преимущественно использующийся в учебном программировании
Сортировка вставками – простой алгоритм сортировки, преимущественно использующийся в учебном программировании. К положительной стороне метода относится простота реализации, а также его эффективность на частично упорядоченных последовательностях, и/или состоящих из небольшого числа элементов. Тем не менее, высокая вычислительная сложность не позволяет рекомендовать алгоритм в повсеместном использовании. Рассмотрим алгоритм сортировки вставками на примере колоды игральных карт. Процесс их упорядочивания по возрастанию (в колоде карты расположены в случайном порядке) будет следующим. Обратим внимание на вторую карту, если ее значение меньше первой, то меняем эти карты местами, в противном случае карты сохраняют свои позиции, и алгоритм переходит к шагу 2. На 2-ом шаге смотрим на третью карту, здесь возможны четыре случая отношения значений карт: 1. первая и вторая карта меньше третьей; 2. первая и вторая карта больше третьей; 3. первая карта уступает значением третьей, а вторая превосходит ее; 4. первая карта превосходит значением третью карту, а вторая уступает ей. В первом случае не происходит никаких перестановок. Во втором – вторая карта смещается на место третьей, первая на место второй, а третья карта занимает позицию первой. В предпоследнем случае первая карта остается на своем месте, в то время как вторая и третья меняются местами. Ну и наконец, последний случай требует рокировки лишь первой и третьей карт. Все последующие шаги полностью аналогичны расписанным выше. Рассмотрим на примере числовой последовательности процесс сортировки методом вставок. Клетка, выделенная темно-серым цветом – активный на данном шаге элемент, ему также соответствует i-ый номер. Светло-серые клетки это те элементы, значения которых сравниваются с i-ым элементом. Все, что закрашено белым – не затрагиваемая на шаге часть последовательности. Ниже на анимированном изображении показан еще один пример работы алгоритма сортировки вставками. Здесь, как и в предыдущем примере, последовательность сортируется по возрастанию. Таким образом, получается, что на каждом этапе выполнения алгоритма сортируется некоторая часть массива, размер которой с шагом увеличивается, и в конце сортируется весь массив целиком.
Код программы на C++:
Обе программы сортируют массив по возрастанию. В их основной части выполняются три операции: определение количества элементов в массиве, ввод этих элементов и вызов подпрограммы. Подпрограмма состоит из алгоритма сортировки и цикла, выводящего результирующую упорядоченную последовательность. Алгоритм включает в себя классическую для многих алгоритмов сортировки структуру вложенных циклов. Количество итераций внешнего цикла не превышает n-1, где n – число элементов в массиве; внутренний цикл, начиная с шага i+1, заканчивает свое выполнение при j=0 (значение переменной-счетчика j уменьшается с каждым шагом на 1). Переменным key и temp на i-ом шаге присваиваются значения, зависящие от шага и значения элемента массива mas на этом шаге. В переменной temp храниться значение элемента массива mas[i+1], оно во внутреннем цикле сравнивается со значениями других элементов. Key запоминает индекс элемента, который последним был больше temp, и ему, по завершению работы внутреннего цикла, присваивается значение переменной temp.
|