Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Расчет трехфазных цепей
Рассмотрим расчет трехфазной цепи звезда – звезда с нейтральным проводом (рис. 1.7). Расчет такой цепи можно производить всеми известными методами расчета разветвленных цепей. Чаще всего рационально применять метод узловых потенциалов, т.к. в этой схеме два узла O и O1, идля определения неизвестных токов и напряжений нужно составить одно уравнение. Примем потенциал точки О равным нулю, тогда напряжение нейтрали . (1.8) Здесь – комплексы ЭДС соответствующих фаз генератора, ; – комплексные проводимости соответствующих фаз нагрузки и нулевого провода. Напряжение на фазах нагрузки (1.9) Токи в фазах: (1.10) Рассмотрим несколько частных случаев. 1. Отсутствует сопротивление в нейтральном проводе , тогда . 2. Сопротивления нагрузки одинаковы , нагрузка симметрична. Из (1.8) следует, что в этом случае также напряжение нейтрали . Линейные токи соответственно равны (1.11) Учитывая соотношение (1.11), векторные диаграммы напряжений на нагрузке и на генераторе совпадают и имеют вид, представленный на рис. 1.8, а. Рассчитав треугольник, образованный, например, фазными напряжениями и линейным , получим . (1.12) Здесь – модули фазного напряжения симметричной нагрузки. 3. Нейтральный провод отсутствует, что соответствует схеме «звезда – звезда без нейтрального провода». Расчет производится по формулам (1.8, 1.9) с учетом того, что . Замечание. В схеме «звезда – звезда без нейтрального провода» с симметричным генератором и несимметричной нагрузкой в случае равенства комплексных сопротивлений только в двух фазах напряжение нейтрали можно определить из соотношений Покажем справедливость этих формул на примере .
При соединении нагрузки в треугольник токи в его фазах определяются по закону Ома . (1.13) Линейные токи находят по первому закону Кирхгофа . (1.14) Поскольку линейные напряжения на нагрузке равны линейным напряжениям на генераторе, которые в свою очередь равны соответствующим ЭДС на обмотках генератора, векторная диаграмма линейных напряжений на нагрузке (рис. 1.9) полностью совпадает с векторной диаграммой генераторных ЭДС, приведенных на рис. 1.2. Пусть нагрузка симметрична и носит активно-индуктивный характер, тогда векторные диаграммы напряжений, фазных и линейных токов имеют вид, представленный на рис. 1.10. С помощью полученной диаграммы можно определить, что модули линейных токов равны (они являются сторонами равностороннего треугольника) . Из расчета треугольников, образованных двумя фазными токами (биссектрисы равностороннего треугольника) и линейным током, следует, что . (1.15) При несимметричной нагрузке векторные диаграммы токов имеют самый разнообразный вид. Пример такой диаграммы приведен на рис. 1.11, где .
|