Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Методы стандартизации коэффициентов
Еще одним способом устранения влияния структурных факторов и является стандартизация демографических коэффициентов. Метод стандартизации был предложен и впервые применен в анализе смертности английским статистиком и демографом У. Фарром (XV. Рагг, 1807—1883). Применение стандартизации основано на разложении общих коэффициентов на сомножители, выражающие, с одной стороны, интенсивность демографического процесса, а с другой, численность или долю соответствующего субнаселения во всем населении. Суть стандартизации заключается в том, что реальные общие коэффициенты сравниваются с показателями некоторого условного населения, которое получается, если проделать следующее. Интенсивность демографического процесса в некотором населении (реальном или искусственно сконструированном) или его структура принимается за стандарт. Затем для каждого из сравниваемых населений рассчитывается стандартизованный общий коэффициент, который показывает, какими были бы общие коэффициенты рассматриваемого процесса в данном населении, если бы интенсивность этого процесса в нем или его структура были бы такими же, как и в населении стандарта. При этом, в зависимости от того, что именно принимается за стандарт (интенсивность или структура), применяют различные методы стандартизации. Наибольшее распространение имеют прямая стандартизация, косвенная и обратная, к рассмотрению которых мы и переходим. Покажем суть этих методов на примере стандартизации общих коэффициентов смертности. При прямой стандартизации повозрастные коэффициенты смертности реального населения перевзвешиваются по возрастной структуре стандарта. Таким образом получается то число смертей, которое имело бы место в реальном населении, если бы его возрастная структура была такой же, как и возрастная структура стандарта. Разделив это число на число смертей в стандартном населении, получают индекс прямой стандартизации. Если общий коэффициент смертности стандарта умножить на этот индекс, то получим стандартизованный общий коэффициент смертности, который показывает, какова была бы величина общего коэффициента смертности в реальном населении, если бы его возрастная структура была такой же, как и возрастная структура стандарта. В случае косвенной стандартизации поступают прямо противоположным образом: повозрастные коэффициенты смертности стандарта перевзвешиваются по возрастной структуре реального населения. Таким образом получается то число смертей, которое бы имело место в реальном населении, если бы его возрастная смертность была такой же, как и повозрастная смертность стандартного населения. Разделив число смертей в реальном населении на их ожидаемое число, получают индекс косвенной стандартизации. Если общий коэффициент смертности стандарта умножить на этот индекс, то получим стандартизованный общий коэффициент смертности, который показывает, какова была бы величина общего коэффициента смертности в реальном населении, если бы повозрастные коэффициенты смертности в нем были такими же, как и в населении стандарта. Метод обратной стандартизации, иначе называемый методом ожидаемой численности населения, применяется в том случае, когда отсутствуют данные о возрастной структуре данного населения, но зато есть данные об его общей численности и о числе демографических событий в нем (случай нередкий во многих развивающихся странах, где переписи населения стали проводиться лишь недавно). А также, разумеется, известны повозрастные коэффициенты смертности стандарта. Зная это, можно восстановить условную среднюю численность всех возрастных групп реального населения при условии, что реальное население имеет те же повозрастные коэффициенты смертности, что и население стандарта.
|