Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Окончить транзакциюСтр 1 из 4Следующая ⇒
Лекция 6 Механізм транзакцій. Бізнес правила. Словник даних. Таблиці dBase. Типи полів у dBase. Засоби роботи з таблицями. Транза́ кция (англ. transaction) – группа последовательных операций с базой данных, которая представляет собой логическую единицу работы с данными. Транзакция может быть выполнена либо целиком и успешно, соблюдая целостность данных и независимо от параллельно идущих других транзакций, либо не выполнена вообще и тогда она не должна произвести никакого эффекта. Транзакции обрабатываются транзакционными системами, в процессе работы которых создаётся история транзакций. Различают последовательные (обычные), параллельные и распределённые транзакции. Распределённые транзакции подразумевают использование больше чем одной транзакционной системы и требуют намного более сложной логики (например, two-phase commit — двухфазный протокол фиксации транзакции). Также, в некоторых системах реализованы автономные транзакции, или под-транзакции, которые являются автономной частью родительской транзакции.
Пример: необходимо перевести с банковского счёта номер 5 на счёт номер 7 сумму в 10 денежных единиц. Этого можно достичь, к примеру, приведённой последовательностью действий: Начать транзакцию · прочесть баланс на счету номер 5 · уменьшить баланс на 10 денежных единиц · сохранить новый баланс счёта номер 5 · прочесть баланс на счету номер 7 · увеличить баланс на 10 денежных единиц · сохранить новый баланс счёта номер 7 Окончить транзакцию Эти действия представляют собой логическую единицу работы «перевод суммы между счетами», и таким образом, являются транзакцией. Если прервать данную транзакцию, к примеру, в середине, и не аннулировать все изменения, легко оставить владельца счёта номер 5 без 10 единиц, тогда как владелец счета номер 7 их не получит.
Одним из наиболее распространённых наборов требований к транзакциям и транзакционным системам является набор ACID (Atomicity, Consistency, Isolation, Durability). Требования ACID были в основном сформулированы в конце 70-х годов Джимом Греем. Вместе с тем, существуют специализированные системы с ослабленными транзакционными свойствами. Atomicity — Атомарность. Атомарность гарантирует, что никакая транзакция не будет зафиксирована в системе частично. Будут либо выполнены все её подоперации, либо не выполнено ни одной. Поскольку на практике невозможно одновременно и атомарно выполнить всю последовательность операций внутри транзакции, вводится понятие «отката» (rollback): если транзакцию не удаётся полностью завершить, результаты всех её до сих пор произведённых действий будут отменены и система вернётся в исходное состояние. Consistency — Согласованность. Одно из самых сложных и неоднозначных свойств из четвёрки ACID. В соответствии с этим требованием, система находится в согласованном состоянии до начала транзакции и должна остаться в согласованном состоянии после завершения транзакции. Не нужно путать требование согласованности с требованиями целостности (integrity). Последние правила являются более узкими и, во многом, специфичны для реляционных СУБД: есть требования целостности типов (domain integrity), целостности ссылок (referential integrity), целостности сущностей (entity integrity), которые не могут быть нарушены физически в силу особенностей реализации системы. Согласованность является более широким понятием. Например, в банковской системе может существовать требование равенства суммы, списываемой с одного счёта, сумме, зачисляемой на другой. Это бизнес-правило и оно не может быть гарантировано только проверками целостности, его должны соблюсти программисты при написании кода транзакций. Если какая-либо транзакция произведёт списание, но не произведёт зачисление, то система останется в некорректном состоянии и свойство согласованности будет нарушено. Наконец, ещё одно замечание касается того, что в ходе выполнения транзакции согласованность не требуется. В нашем примере, списание и зачисление будут, скорее всего, двумя разными подоперациями и между их выполнением внутри транзакции будет видно несогласованное состояние системы. Однако не нужно забывать, что при выполнении требования изоляции, никаким другим транзакциям эта несогласованность не будет видна. А атомарность гарантирует, что транзакция либо будет полностью завершена, либо ни одна из операций транзакции не будет выполнена. Тем самым эта промежуточная несогласованность является скрытой. Isolation — Изолированность. Во время выполнения транзакции параллельные транзакции не должны оказывать влияние на её результат. Это свойство не соблюдается на уровне изолированности Repeatable Read и ниже. Durability — Надежность. Независимо от проблем на нижних уровнях (к примеру, обесточивание системы или сбои в оборудовании) изменения, сделанные успешно завершённой транзакцией, должны остаться сохранёнными после возвращения системы в работу. Другими словами, если пользователь получил подтверждение от системы, что транзакция выполнена, он может быть уверен, что сделанные им изменения не будут отменены из-за какого-либо сбоя. В идеале транзакции разных пользователей должны выполняться так, чтобы создавалась иллюзия, что пользователь текущей транзакции — единственный. Однако в реальности, по соображениям производительности и для выполнения некоторых специальных задач, СУБД предоставляют различные уровни изоляции транзакций. Уровни описаны в порядке увеличения изолированности транзакций и, соответственно, надёжности работы с данными. 0 — Чтение неподтверждённых данных (грязное чтение) (Read Uncommitted, Dirty Read) — чтение незафиксированных изменений как своей транзакции, так и параллельных транзакций. Нет гарантии, что данные, изменённые другими транзакциями, не будут в любой момент изменены в результате их отката, поэтому такое чтение является потенциальным источником ошибок. Невозможны потерянные изменения (lost changes), возможны неповторяемое чтение и фантомы. 1 — Чтение подтверждённых данных (Read Committed) — чтение всех изменений своей транзакции и зафиксированных изменений параллельных транзакций. Потерянные изменения и грязное чтение не допускается, возможны неповторяемое чтение и фантомы. 2 — Повторяемое чтение (Repeatable Read, Snapshot) — чтение всех изменений своей транзакции, любые изменения, внесённые параллельными транзакциями после начала своей, недоступны. Потерянные изменения, грязное и неповторяемое чтение невозможны, возможны фантомы. 3 — Сериализуемый — (Serializable) — сериализуемые транзакции. Результат параллельного выполнения сериализуемой транзакции с другими транзакциями должен быть логически эквивалентен результату их какого-либо последовательного выполнения. Проблемы синхронизации не возникают. Чем выше уровень изоляции, тем больше требуется ресурсов, чтобы его обеспечить. Соответственно, повышение изолированности может приводить к снижению скорости выполнения параллельных транзакций, что является «платой» за повышение надёжности. В СУБД уровень изоляции транзакций можно выбрать как для всех транзакций сразу, так и для одной конкретной транзакции. По умолчанию в большинстве баз данных используется уровень 1 (Read Committed). Уровень 0 используется в основном для отслеживания изменений длительных транзакций или для чтения редко изменяемых данных. Уровни 2 и 3 используются при повышенных требованиях к изолированности транзакций.
|