Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Окончить транзакцию






Лекция 6

Механізм транзакцій. Бізнес правила. Словник даних. Таблиці dBase. Типи полів у dBase. Засоби роботи з таблицями.

Транза́ кция (англ. transaction) – группа последовательных операций с базой данных, которая представляет собой логическую единицу работы с данными. Транзакция может быть выполнена либо целиком и успешно, соблюдая целостность данных и независимо от параллельно идущих других транзакций, либо не выполнена вообще и тогда она не должна произвести никакого эффекта. Транзакции обрабатываются транзакционными системами, в процессе работы которых создаётся история транзакций.

Различают последовательные (обычные), параллельные и распределённые транзакции. Распределённые транзакции подразумевают использование больше чем одной транзакционной системы и требуют намного более сложной логики (например, two-phase commit — двухфазный протокол фиксации транзакции). Также, в некоторых системах реализованы автономные транзакции, или под-транзакции, которые являются автономной частью родительской транзакции.

 

Пример: необходимо перевести с банковского счёта номер 5 на счёт номер 7 сумму в 10 денежных единиц. Этого можно достичь, к примеру, приведённой последовательностью действий:

Начать транзакцию

· прочесть баланс на счету номер 5

· уменьшить баланс на 10 денежных единиц

· сохранить новый баланс счёта номер 5

· прочесть баланс на счету номер 7

· увеличить баланс на 10 денежных единиц

· сохранить новый баланс счёта номер 7

Окончить транзакцию

Эти действия представляют собой логическую единицу работы «перевод суммы между счетами», и таким образом, являются транзакцией. Если прервать данную транзакцию, к примеру, в середине, и не аннулировать все изменения, легко оставить владельца счёта номер 5 без 10 единиц, тогда как владелец счета номер 7 их не получит.

 

Одним из наиболее распространённых наборов требований к транзакциям и транзакционным системам является набор ACID (Atomicity, Consistency, Isolation, Durability). Требования ACID были в основном сформулированы в конце 70-х годов Джимом Греем. Вместе с тем, существуют специализированные системы с ослабленными транзакционными свойствами.

Atomicity — Атомарность. Атомарность гарантирует, что никакая транзакция не будет зафиксирована в системе частично. Будут либо выполнены все её подоперации, либо не выполнено ни одной. Поскольку на практике невозможно одновременно и атомарно выполнить всю последовательность операций внутри транзакции, вводится понятие «отката» (rollback): если транзакцию не удаётся полностью завершить, результаты всех её до сих пор произведённых действий будут отменены и система вернётся в исходное состояние.

Consistency — Согласованность. Одно из самых сложных и неоднозначных свойств из четвёрки ACID. В соответствии с этим требованием, система находится в согласованном состоянии до начала транзакции и должна остаться в согласованном состоянии после завершения транзакции. Не нужно путать требование согласованности с требованиями целостности (integrity). Последние правила являются более узкими и, во многом, специфичны для реляционных СУБД: есть требования целостности типов (domain integrity), целостности ссылок (referential integrity), целостности сущностей (entity integrity), которые не могут быть нарушены физически в силу особенностей реализации системы.

Согласованность является более широким понятием. Например, в банковской системе может существовать требование равенства суммы, списываемой с одного счёта, сумме, зачисляемой на другой. Это бизнес-правило и оно не может быть гарантировано только проверками целостности, его должны соблюсти программисты при написании кода транзакций. Если какая-либо транзакция произведёт списание, но не произведёт зачисление, то система останется в некорректном состоянии и свойство согласованности будет нарушено.

Наконец, ещё одно замечание касается того, что в ходе выполнения транзакции согласованность не требуется. В нашем примере, списание и зачисление будут, скорее всего, двумя разными подоперациями и между их выполнением внутри транзакции будет видно несогласованное состояние системы. Однако не нужно забывать, что при выполнении требования изоляции, никаким другим транзакциям эта несогласованность не будет видна. А атомарность гарантирует, что транзакция либо будет полностью завершена, либо ни одна из операций транзакции не будет выполнена. Тем самым эта промежуточная несогласованность является скрытой.

Isolation — Изолированность. Во время выполнения транзакции параллельные транзакции не должны оказывать влияние на её результат. Это свойство не соблюдается на уровне изолированности Repeatable Read и ниже.

Durability — Надежность. Независимо от проблем на нижних уровнях (к примеру, обесточивание системы или сбои в оборудовании) изменения, сделанные успешно завершённой транзакцией, должны остаться сохранёнными после возвращения системы в работу. Другими словами, если пользователь получил подтверждение от системы, что транзакция выполнена, он может быть уверен, что сделанные им изменения не будут отменены из-за какого-либо сбоя.

В идеале транзакции разных пользователей должны выполняться так, чтобы создавалась иллюзия, что пользователь текущей транзакции — единственный. Однако в реальности, по соображениям производительности и для выполнения некоторых специальных задач, СУБД предоставляют различные уровни изоляции транзакций.

Уровни описаны в порядке увеличения изолированности транзакций и, соответственно, надёжности работы с данными.

0 — Чтение неподтверждённых данных (грязное чтение) (Read Uncommitted, Dirty Read) — чтение незафиксированных изменений как своей транзакции, так и параллельных транзакций. Нет гарантии, что данные, изменённые другими транзакциями, не будут в любой момент изменены в результате их отката, поэтому такое чтение является потенциальным источником ошибок. Невозможны потерянные изменения (lost changes), возможны неповторяемое чтение и фантомы.

1 — Чтение подтверждённых данных (Read Committed) — чтение всех изменений своей транзакции и зафиксированных изменений параллельных транзакций. Потерянные изменения и грязное чтение не допускается, возможны неповторяемое чтение и фантомы.

2 — Повторяемое чтение (Repeatable Read, Snapshot) — чтение всех изменений своей транзакции, любые изменения, внесённые параллельными транзакциями после начала своей, недоступны. Потерянные изменения, грязное и неповторяемое чтение невозможны, возможны фантомы.

3 — Сериализуемый — (Serializable) — сериализуемые транзакции. Результат параллельного выполнения сериализуемой транзакции с другими транзакциями должен быть логически эквивалентен результату их какого-либо последовательного выполнения. Проблемы синхронизации не возникают.

Чем выше уровень изоляции, тем больше требуется ресурсов, чтобы его обеспечить. Соответственно, повышение изолированности может приводить к снижению скорости выполнения параллельных транзакций, что является «платой» за повышение надёжности.

В СУБД уровень изоляции транзакций можно выбрать как для всех транзакций сразу, так и для одной конкретной транзакции. По умолчанию в большинстве баз данных используется уровень 1 (Read Committed). Уровень 0 используется в основном для отслеживания изменений длительных транзакций или для чтения редко изменяемых данных. Уровни 2 и 3 используются при повышенных требованиях к изолированности транзакций.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.