Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Лекция 10. Электронные состояния и электронно-колебательно-вращательные спектры молекул (УФ)Стр 1 из 3Следующая ⇒
Электронные состояния и электронно-колебательно-вращательные спектры молекул (УФ). Спектры двухатомных молекул. Классификация электронных состояний и разрешенные переходы. Колебательная структура. Таблица и серии Деландра. Принцип Франка-Кондона. Определение энергии диссоциации. Вращательная структура.
Классификация электронных состояний двухатомных молекул по проекции орбитального момента количества движения. Эта классификация основана на следующем. Орбитальный момент. Квадрат суммарного вектора L момента количества движения всех электронов молекулы определяется выражением: L2 = где L – соответствующее квантовое число. Каждое электронное состояние двухатомной молекулы характеризуется определенным значением проекции орбитального момента количества движения на линию, соединяющую ядра молекулы. Эта проекция выражается в виде: где - квантовое число проекции орбитального момента – может быть равно одному из чисел: Состояния, отличающиеся только знаком , не различаются по энергии. Различия в энергии определяются числом . Ряд других свойств состояний также определяются числом , поэтому электронные состояния классифицируют по значению этого числа: соответствуют символам Магнитное поле, связанное с орбитальным моментов электронов, определяется проекцией орбитального момента на межъядерную ось, т.е. определяется квантовым числом и направлено вдоль межъядерной оси. Для -состояний напряженность магнитного поля равна 0, для других – пропорциональна числу . Спин, компонеты мультиплета. Квадрат вектора суммарного спина всех электронов определяется квантовым числом суммарного спина. S2 = Квантовое число может быть целым (при четном количестве электронов) и полуцелым (при нечетном количестве электронов). Проекция суммарного вектора на межъядерную ось будет где - квантовое число проекции суммарного спина – может быть равно одному из чисел: (не путать с , определяющим квантовое состояние ). Совокупность состояний, имеющих одно и тоже значение и разные значения , называется мультиплетом, а отдельные состояния – компонентами мультиплета. Энергия компонента мультиплета определяется напряженностью внутреннего магнитного поля молекулы, пропорциональной , и проекцией суммарного вектора спина на межъядерную ось. Если обозначить среднюю энергию мультиплета через , то энергии отдельных его компонент может быть выражена: Например, для состояния (): Каждый компонент мультиплета может быть охарактеризован суммарной проекцией орбитального и спинового моментов на межъядерную ось. Квантовое число этой проекции равно . Отдельные компоненты мультиплета обозначаются символом состояния и значением , которое ставится как нижний индекс справа. В примере
И компоненты дублета будут обозначаться как и .
|