Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Уравнение свободных незатухающих гармонических колебаний.






    Для возбуждения в контуре колебаний предварительно заряжают конденсатор, сообщая его обкладкам заряд ±q. Тогда в начальный момент времени t= 0 (рис. 19, а) между обкладками конденсатора возникнет электрическое поле. Если замкнуть конденсатор на катушку индуктивности, конденсатор начнет разряжаться, и в контуре потечет возрастающий со временем ток I. Когда конден­сатор полностью разрядится, энергия электрического поля конденсатора полностью перейдет в энер­гию магнитного поля катушки (рис. 19, б). Начиная с этого момента ток в контуре будет убывать, и, следовательно, начнет ослабевать магнитное поле катушки, тогда в ней согласно закону Фарадея индуцируется ток, который течет в соответствии с правилом Ленца в том же направлении, что и ток разрядки конденсатора. Конденсатор начнет перезаряжаться, возникнет электрическое поле, стремящееся осла­бить ток, который, в конце концов, обратится в нуль, а заряд на обкладках конденсатора достигнет максимума (рис. 19, в). Далее те же процессы начнут протекать в обратном направлении (рис. 19, г), и система к моменту времени t=Т (Т – период колебаний) придет в первоначальное состояние (рис. 19, а). После этого начнется повторение рассмотренного цикла разряд­ки и зарядки конденсатора, то есть начнутся периодические незатухающие колебания величины заряда q на обкладках конденсатора, напряжения UC на конденсаторе и силы тока I, текущего через катушку индуктивности. Согласно закону Фарадея напряжение UC на конденсаторе определяется скоростью изменения силы тока в катушке индуктивности идеального контура, то есть:

    .

    Исходя из того, что UC=q/C, а I=dq/dt, получаем дифференциальное уравнение свободных незатухающих гармонических колебаний величины заряда q на обкладках конденсатора:

    или .

    Решением этого дифференциального уравнения является функция q (t), то есть уравнение свободных незатухающих гармонических колебаний величины заряда q на обкладках конденсатора:

    ,

    где q (t) – величина заряда на обкладках конденсатора в момент времени t;

    q 0 – амплитуда колебаний заряда на обкладках конденсатора;

    – круговая (или циклическая) частота колебаний ();

    =2 / T (T – период колебаний, формула Томсона);

    – фаза колебаний в момент времени t;

    – начальная фаза колебаний, то есть фаза колебаний в момент времени t =0.

    Уравнение свободных затухающих гармонических колебаний. В реальном колебательном контуре учитывается, что кроме катушки индуктивностью L, конденсатора емкостью С, в цепи также имеется резистор сопротивлением R, отличным от нуля, что является причиной затухания колебаний в реальном колебательном контуре. Свободные затухающие колебания – колебания, амплитуда которых из-за потерь энергии реальной колебательной системой с течением времени уменьшается.

    Для цепи реального колебательного контура напряжения на последовательно включенных конденсаторе емкостью С и резисторе сопротивлением R складываются. Тогда с учетом закона Фарадея для цепи реального колебательного контура можно записать:

    ,

    где – электродвижущая сила самоиндукции в катушке;

    UC – напряжение на конденсаторе (UC =q/C);

    IR – напряжения на резисторе.

    Исходя из того, что I=dq/dt, получаем дифференциальное уравнение свободных затухающих гармонических колебаний величины заряда q на обкладках конденсатора:

    или ,

    где – коэффициент затухания колебаний (), .

    Решением полученного дифференциального уравнения является функция q (t), то есть уравнение свободных затухающих гармонических колебаний величины заряда q на обкладках конденсатора:

    ,

    где q (t) – величина заряда на обкладках конденсатора в момент времени t;

    – амплитуда затухающих колебаний заряда в момент времени t;

    q 0 – начальная амплитуда затухающих колебаний заряда;

    – круговая (или циклическая) частота колебаний ();

    – фаза затухающих колебаний в момент времени t;

    – начальная фаза затухающих колебаний.

    Период свободных затухающих колебаний в реальном колебательном контуре:

    .

    Вынужденные электромагнитные колебания. Чтобы в реальной колебательной системе получить незатухающие колебания, необходимо в процессе колебаний компенсировать потери энергии. Такая компенсация в реальном колебательном контуре возможна с помощью внешнего периодически изменяющегося по гармоническому закону переменного напряжения U (t):

    .

    В этом случае дифференциальное уравнение вынужденных электромагнитных колебаний примет вид:

    или .

    Решением полученного дифференциального уравнения является функция q (t):

    .

    В установившемся режиме вынужденные колебания происходят с частотой w и являют­ся гармоническими, а амплитуда и фаза колебаний определяются следующими выражениями:

    ; .

    Отсюда следует, что амплитуда колебаний величины заряда имеет максимум при резонансной частоте внешнего источника :

    .

    Явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающего переменного напряжения к ча­стоте, близкой частоте , называется резонансом.

     

    Тема 10. Электромагнитные волны

    Согласно теории Максвелла электромагнитные поля могут существовать в виде электромагнитных волн, фазовая скорость распространения которых определяет­ся выражением:

    ,

    где и – соответственно электрическая и магнитная постоянные,

    e и m – соответственно электрическая и магнитная проницаемости среды,

    с – скорость света в вакууме ().

    В вакууме (e = 1, m = l) скорость распространения электромагнитных волн совпадает со скоростью света(с), что согласуется с теорией Максвелла о том,

    что свет представляет собой электромагнитные волны.

    По теории Максвелла электромагнитные волны являются поперечными, то есть век­торы и напряженностей электрического и магнитного полей взаимно перпендикулярны и лежат в плоскости, перпендикулярной вектору

    скорости рас­пространения волны, причем векторы , и образуют правовинтовую систему (рис. 20).

     
     
    x
    у
    z
    Рис. 20

     

     

    Из теории Максвелла следует также, что в электромагнитной волне векторы и колеблются в одинаковых фазах (рис. 20), то есть значения напряженностей Е и Н электрического и магнитного полей одновременно достигают максимума и одновременно обращаются в нуль, причем мгновенные значения Е и Н связаны соотношением: .

    Уравнение плоской монохроматической электромагнитной волны (индексы у и z при Е и Н подчеркивают лишь то, что векторы и направлены вдоль взаимно перпендикулярных осей в соответствии с рис. 20):

     

    ,

    ,

     

    где E 0 и Н 0– соответственно амплитуды напряженностей электрического и магнит­ного полей,

    w – круговая частота волны, (T – период колебаний),

    k – волновое число, ( – длина волны),

    j – на­чальная фаза колебаний (на­чальная фаза колебаний j имеет одинаковое значение как для колебания электрического, так и магнитного векторов, так как в электромаг­нитной волне эти колебания происходят в одинаковых фазах).

    Энергия электромагнитных волн. Электромагнитные волны переносят энергию. Объемная плотность w энергии электромагнитной волны складывается из объемных плотностей wэл электрического и wм магнитного полей:

    .

    Учитывая выражение связи между величинами Е и Н, можно получить, что суммарная плотность энергии электрического и маг­нитного полей:

    .

    Умножив плотность энергии w на скорость распространения волны в среде, получим модуль плотности потока энергии:

    .

    Tax как векторы и взаимно перпендикулярны, то произведение EH совпадает с модулем вектора ( – векторное произведение векторов и ). Кроме того, направление вектора совпадает с направлением распространения волны, то есть с направлением переноса энергии, что позволило ввести в ектор , равныйвекторному произведению , как вектор плотности потока электромагнитной энергии, называемый вектором УмоваПойнтинга:

    .

    Итак, вектор направлен в сторону распространения электромагнитной волны, а его модуль равен энергии, переносимой электромагнитной волной за единицу времени через единичную площадку, перпендикулярную направлению распространения волны.

     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.