Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Ситуационная (практическая) задача № 2






 

При измерении веса 25 упаковок сильнодействующего лекарственного препарата были обнаружены следующие отклонения (в гр.) от указанного на обертке:

–24, 34; –14, 59; –18, 27; –8, 94; –15, 09; –10, 94; 4, 47; 3, 05; –8, 33; –22, 98; 1, 75;

–32, 07; –7, 43; –18, 63; –12, 97; –11, 08; –7, 44; –1, 70; 6, 34; –11, 08; –11, 12; –15, 90;

–10, 26; –8, 07; –6, 48.

Необходимо:

§ Определить исследуемый признак и его тип (дискретный или непрерывный).

§ В зависимости от типа признака построить полигон или гистограмму относительных частот.

§ На основе визуального анализа полигона (гистограммы) сформулировать гипотезу о законе распределения признака.

§ Вычислить выборочные характеристики изучаемого признака: среднее, дисперсию, среднее квадратическое (стандартное) отклонение.

§ Используя критерий согласия «хи-квадрат» Пирсона, проверить соответствие выборочных данных выдвинутому в п.3 закону распределения при уровне значимости 0, 05.

§ Для генеральной средней и дисперсии построить доверительные интервалы, соответствующие доверительной вероятности 0, 95.

§ С надежностью 0, 95 проверить гипотезу о равенстве:

а) генеральной средней значению –10;

б) генеральной дисперсии значению 100.

Решение:

1. Тип признака непрерывный, т.к. исходные цифры могут принимать любые дробные значения на определенном промежутке.

Разобьем данные на 5 равных интервалов:

Длина интервала

Интервал

Гистограмма относительных частот

3. На основе анализа гистограммы распределения выдвигаем гипотезу о нормальном законе распределения исследуемого признака.

4. Среднее значение:

Дисперсия:

Среднее квадратическое (стандартное) отклонение:

5. Вводим гипотезы:

Исследуемый признак имеет нормальное распределение:

Исследуемый признак имеет другое распределение:

Условие принятия гипотезы

Вероятность попадания в интервалы:

Интервал
Сумма

, следует гипотезу о нормальном распределении исследуемого признака принимаем, при доверительной вероятности 95%.

 

6. Доверительный интервал для генерального среднего, при доверительной вероятности 95%:

С вероятностью 95% генеральное среднее находится в интервале от до .

Доверительный интервал для генеральной дисперсии, при доверительной вероятности 95%:

С вероятностью 95% генеральная дисперсия находится в интервале от до .

7а. Вводим гипотезы:

Условие принятия гипотезы

Условие принятия гипотезы выполняется , следует с вероятностью 95% генеральное среднее можно считать равным -10.

7б. Вводим гипотезы:

Условие принятия гипотезы

Условие принятия гипотезы выполняется , следует с вероятностью 95% генеральную дисперсию можно считать равной 100.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.