Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Теоретическая часть. Определение удельного заряда электронаСтр 1 из 4Следующая ⇒
Лабораторная работа № 11 Определение удельного заряда электрона Цель работы: определение удельного заряда электрона по траектории пучка электронов в магнитном поле. Теоретическая часть Удельный заряд элементарной частицы, равный отношению ее электрического заряда к массе, является одной из её важнейших характеристик. Знание этой величины позволяет, например, идентифицировать частицы по их трекам в регистрирующих устройствах. Один из методов нахождения удельного заряда – определение радиуса кривизны траектории движения частицы в магнитном поле. На заряженную частицу с зарядом , движущуюся со скоростью в магнитном поле с индукцией , действует сила Лоренца: . В неоднородном поле траектория движения представляет собой винтовую линию переменного радиуса и шага. Однако, если частица движется в однородном магнитном поле, и вектор скорости перпендикулярен вектору магнитной индукции , то траектория движения становится проще – она превращается в окружность, плоскость которой перпендикулярна вектору . Радиус окружности можно найти с помощью второго закона Ньютона: , где – масса частицы, q – ее заряд, – центростремительное ускорение частицы. Отсюда следует, что (1) Первоначально покоившаяся частица, попадающая в магнитное поле после прохождения в электрическом поле ускоряющей разности потенциалов U, приобретает кинетическую энергию . (2) Приведенные соотношения (1) и (2) справедливы в нерелятивистском приближении. Исключив из них скорость, для электрона получим , (3) где - диаметр окружности. Таким образом, зная радиус r (или диаметр d) круговой траектории движения электрона в магнитном поле с известной индукцией B, а также ускоряющую разность потенциалов U, можно вычислить отношение величины заряда электрона e к его массе me, т.е. величину удельного заряда электрона.
|