Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Взаимоблокировки (тупики)
Коффман и другие исследователи доказали, что для возникновения тупиковой ситуации должны выполняться четыре условия [ 37 ].
Для того чтобы произошла взаимоблокировка, должны выполняться все эти четыре условия. Если хотя бы одно отсутствует, тупиковая ситуация невозможна. При столкновении с взаимоблокировками используются четыре стратегии.
Если взаимоблокировки случаются в среднем раз в пять лет, а сбои ОС, компиляторов и неисправности аппаратуры происходят в среднем один раз в неделю, то подходит первая стратегия. К этому надо добавить, что большинство операционных систем потенциально страдают от взаимоблокировок, которые не обнаруживаются, не говоря уже об автоматическом выходе из тупика. Вторая техника представляет собой обнаружение и восстановление. При использовании этого метода система не пытается предотвратить попадания в тупиковые ситуации. Вместо этого она позволяет произойти взаимоблокировке, старается определить, когда это случилось, и затем совершает некоторые действия по возврату системы к состоянию, имевшему место до того, как система попала в тупик. Рассмотрим методы обнаружения взаимоблокировок. Обнаружение взаимоблокировки при наличии одного ресурса каждого типа достаточно просто. Для такой системы можно построить граф ресурсов и процессов, о котором уже говорилось, и если в графе нет циклов, система в тупик не попала. Например, пусть система из семи процессов (A, B, C, D, E, F, G) и шести ресурсов (R, S, T, V, W, U) в некоторый момент соответствует следующему списку [ 17 ]. 1. Процесс A занимает ресурс R и хочет получить ресурс S. Вопрос: заблокирована ли эта система, и если да, то какие процессы в этом участвуют? Чтобы ответить на этот вопрос, нужно составить граф ресурсов и процессов (рис. 5.14).
Этот граф содержит цикл, указывающий, что процессы D, E, G заблокированы (зрительно легко видно). Однако в этом случае в операционной системе необходима реализация формального алгоритма, выявляющего тупики. Рассмотрим возможность обнаружения взаимоблокировок при наличии нескольких ресурсов каждого типа. Пусть имеется множество процессов P={P1, P2,... Pn}, всего n процессов, и множество ресурсов E={E1, E2,... Em}, где m – число классов ресурсов. В любой момент времени некоторые из ресурсов могут быть заняты и, соответственно, недоступны. Пусть А – вектор доступных ресурсов A={A1, A2,... Am}. Очевидно, что Aj Ej, j = 1, 2, …, m. Введем в рассмотрение две матрицы: C={ci, j| i = 1, 2, …, n; j = 1, 2, …, m} – матрица текущего распределения ресурсов, где ci, j – количество ресурсов j-ого класса, которые занимает процесс Pi; R={ri, j| i = 1, 2, …, n; j = 1, 2, …, m} – матрица требуемых (запрашиваемых) ресурсов, ri, j – количество ресурсов j-ого класса, которые хочет получить процесс Pi. Справедливо m соотношений по ресурсам: Алгоритм обнаружения взаимоблокировок основан на сравнении векторов доступных и требуемых ресурсов. В исходном состоянии все процессы не маркированы (не отмечены). По мере реализации алгоритма на процессы будет ставиться отметка, служащая признаком того, что они могут закончить свою работу и, следовательно, не находятся в тупике. После завершения алгоритма любой немаркированный процесс находится в тупиковой ситуации. Алгоритм обнаружения тупиков состоит из следующих шагов.
Когда нужно искать возникновение тупиков? Можно, конечно, проверять систему каждый раз, когда запрашивается очередной ресурс, это позволит обнаружить тупик максимально рано, но приведет к большим издержкам процессорного времени. Поэтому период проверки нужно выбрать: например, каждые К (сколько – нужно определить!) минут или когда процессор слабо загружен. Предположим, обнаружен тупик. Какие методы можно использовать для его ликвидации? Здесь возможно несколько подходов. Первый – принудительная выгрузка ресурсов: способность забирать ресурс у процесса, отдавать его другому процессу, а затем возвращать назад так, что исходный процесс не замечает того, в значительной мере зависит от свойств ресурса. Выйти из тупика, таким образом, зачастую трудно или невозможно. Второй подход – восстановление через откат. В этом способе процессы должны периодически создавать контрольные точки, позволяющие запустить процесс с его предыстории. Когда взаимоблокировка обнаружена, достаточно просто понять, какие ресурсы нужны процессам. Чтобы выйти из тупика, процесс, занимающий необходимый ресурс, откатывается к тому моменту времени, перед которым он получил данный ресурс, для чего запускается одна из его контрольных точек. Вся работа, выполненная после этой контрольной точки, теряется. Если возобновленный процесс вновь пытается получить данный ресурс, ему придется ждать, когда ресурс станет доступным. Третий подход – восстановление путем уничтожения одного или более процессов. Это грубейший, но простейший выход из тупика. Проблема – решить, какой процесс уничтожать. Идеальной была бы такая организация вычислительного процесса, при которой не возникали бы тупики за счет безопасного распределения ресурсов. Подобные алгоритмы базируются на концепции безопасных состояний.
|