Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Непрерывность функции нескольких переменных. Разрывы функции нескольких переменных. Свойства непрерывных функций.




Опр.1: Функция z=f(x,y) называется непрерывной в точке M0, если имеет место след. равенство: (1) В противном случае M0 – разрыв. При этом M(x,y)→M0 произвольным образом, оставаясь в области D (области определения функции).Опр.2: Функция z=f(x,y) непрерывна в т. M0, если для любого ε>0 сущ. такое δ>0, что лишь только |x-x0|<δ, |y-y0|<δ, то |f(x,y)-f(x0,y0)|<ε. (2)Опр.3: z=f(x,y) непрерывна в M0, при M(x,y)→M0(x0,y0), если для любого ε>0, сущ. r>0, лишь только ρ(M,M0)<r, то |f(M)-f(M0)|<ε. (3)Если в нек. т.M0 не выполняется (1), то M0-точка разрыва z=f(x,y). Условие (1) может не выполняться:z=f(x,y) определена во всех точках окрестности некоторой т.M0, за исключением самой M0.z=f(x,y) определена во всех точках окрестности точки M0, но не существует предела.z=f(x,y) определена во всех точках окрестности M0, существует предел, но не равен значению функции в этой точке.Свойство1: Непрерывная функция в замкнутой ограниченной области D достигает по крайней мере один раз наибольшего значения M и наименьшего значения m.Свойство2: Если ф-ция f(x,y,…) непрерывна в замкнутой ограниченной области D и если M, m – наибольшее и наименьшее значения ф-ции в области, то для любого числа μ (m<μ<M), найдется M0(x0,y0,…), что f(x0,y0,…)=μ. Следствие: Если ф-ция f(x,y,…) непрерывна в замкнутой ограниченной области и принимает как положительные, так и отрицательные значения, то внутри области найдутся точки, в которых ф-ция f(x,y,…) обращается в нуль.Точки разрыва: 1) изолированные; 2) линии разрыва; 3) поверхности разрыва и т.д. Можно показать, что «+, -, ∙, ∕» являются непрерывными функциями.

П-р: следовательно функция разрывная.


mylektsii.ru - Мои Лекции - 2015-2018 год. (0.019 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал