Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Геоинформационные системы






Глобализация и интернационализация экономики, уничтожение торговых барьеров между большим числом государств в Европе и Азии, широкое применение ИТ и ИС в деятельности государственных и коммерческих структур, появление и быстрое развитие глобальной сети Internet привело в середине 80-х годов ХХ века к появлению ИС, которые позволяли организовать в режиме On Line работу транснациональных корпораций, находящихся на разных континентах. Расстояния перестали быть препятствием для эффективной работы распределенных компаний – развивающиеся ИКТ обеспечивали практически мгновенную связь и доставку информации для анализа и принятия делового решения, реализуя известный принцип " 7 х 24" (" 7 дней в неделю, 24 часа в сутки"). Значительную часть этой информации практически в любой сфере деятельности мы получаем в виде рисунков и карт, планов, схем и пояснительных текстов.

Это могут быть схемы магистрального газового или нефтяного трубопровода из Сибири в Западную Европу, движения подводных лодок и самолетов боевого патрулирования вдоль границ России, схемы железнодорожных путей в масштабе страны или метро в городе, план здания или схема взаимосвязей между офисами компании, карта экологического мониторинга территории, атлас земельного кадастра или карта природных ресурсов и т. д.

Выбор места для филиала компании за рубежом, проведение маркетинга и набор персонала в другой стране, координатная " привязка" производства к той местности, где это наиболее выгодно с точки зрения наиболее эффективного использования ресурсов в большинстве случаев перестали быть трудно разрешимой задачей. Появилась насущная необходимость представлять географическую и сопутствующую информацию в удобном графическом виде, совмещая на экране монитора несколько листов сканированного изображения карты.

Быстрое развитие специализированных систем и технологий, получивших название географических ИС — ГИС (Geographical Information Systems — GIS), позволило к концу ХХ века успешно решать такие задачи.

ГИС-технологии получили широкое распространение и применение в науке, технике, бизнесе. Координатно-временная привязка объектов используется в геодезии, картографии, геологии, мореходном деле. Обработка и сведение в единую систему фотографических снимков из космоса в научных и военных целях, обработка данных геофизики и геодинамики, использование в народном хозяйстве (составление городских, региональных и федеральных земельных кадастров) и многое другое производятся с применением ГИС-технологий. Многочисленные определения понятия " геоИС" и " геоинформационная технология" отражают многоплановость понятий.

Рис.50. Многоплановость областей применения ГИС

Рис.51. Общая структура GIS-платформы

Географическая ИС (ГИС) - это совокупность технических, программных, коммуникационных и информационных средств, обеспечивающих ввод, обработку, хранение, математико-картографическое моделирование и образное интегрированное представление (визуализацию) пространственных и соотнесённых с ними атрибутивных данных для решения проблем территориального планирования и управления (ОСТ ВШ 02.001-97).

Таким образом, ГИС-технологии — это, прежде всего, компьютерные технологии и системы, позволяющие эффективно работать с динамическими данными о пространственно-распределенных объектах, дополняя их наглядностью представления и возможностью строить модели и решать задачи пространственно-временного анализа. ГИС, как и любая ИС, снабженная средствами сбора и обработки данных, дает возможность накапливать и анализировать подобную информацию, оперативно находить и обрабатывать нужные географические сведения и отображать их в удобном для пользователя виде (Рис.51).

Применение ГИС-технологий позволяет резко увеличить оперативность и качество работы с пространственно-распределенной информацией по сравнению с традиционными " бумажными" картографическими методами.

Географические пространственно-распределенные данные означают информацию, которая идентифицирует географическое местоположение и свойства естественных или искусственно созданных объектов, а также их границ на земле, над и под землей, на воде, над и под водой, в космическом пространстве. Эта информация может быть получена с помощью дистанционного зондирования, картографирования и различных видов съемок, включая съёмки из космоса.

Данные содержат четыре интегрированных компонента: местоположение и пространственные отношения объектов, время, на которое зафиксированы эти компоненты, и скорость изменения указанных параметров. Иными словами, географические данные описывают:

· географическое пространственное положение физических или смоделированных объектов представляется 2-мерными (координаты X, Y на плоскости), 3-х мерными (широта, долгота, высота над уровнем геоида) и 4-х мерными координатами (широта, долгота, высота над уровнем геоида, время в секундах, средних сутках, среднем солнечном годе) в системе координат, отнесенной к среднему полюсу Земли и положению среднего экватора;

· свойства объектов или моделей могут содержать информацию, которая не указывает явно на пространственную ориентацию и является описательной — тем не менее, такая информация является важной и она также включается в географические данные;

· пространственные отношения определяют взаимное расположение объектов или моделей — например, положение объекта А по отношению к объекту В на плоскости, в пространстве или во времени, движение А относительно В, вложенность А в В и т.д.;

· временные параметры могут характеризовать как взаимное отношение объектов (моделей) так и жизненный цикл географических данных.

Области применения ГИС сегодня крайне разнообразны: землеустройство, контроль ресурсов, экология, муниципальное управление, транспорт, экономика, социальные задачи и многое другое. Первые работы по ГИС-технологиям начали проводиться более 25 лет назад в Канаде и США, где первоначально использовались в основном для целей землеустройства южный и западных районов США и картографирования канадских районов Арктики с помощью компьютерной обработки спутниковых фотографий.

Сейчас все шире начинают внедряться ГИС массового пользования — для генеральных электронных планов городов, планов разработки месторождений полезных ископаемых и морской разведки нефтяных пластов, схем инженерных коммуникаций, схем движения транспорта и т.п. По некоторым оценкам до 80-90% всей информации, с которой мы обычно имеем дело, может быть представлено в виде ГИС различного назначения.

Для поддержки критически важных областей деятельности — атомная энергетика, добыча и транспортировка нефти и газа, ликвидация последствий природных и техногенных катастроф, деятельность в оборонной сфере — в настоящее время всё шире разрабатываются и применяются специализированные Web-ресурсы для реализации распределенных ГИС и ГИС-порталов. Разработка таких порталов производится сегодня на базе международных стандартов, созданных известными международными организациями по стандартизации — ISO (International Organization for Standardization) и OGC (Open Geospatial Consortium). Это такие стандарты, как ISO 19115 MetaData, ISO 19139 MetaData — XML Schema Implementation, Catalog Interfaces, Geography Markup Language и Web Map Service.

Многообразие существующих ГИС-решений укладывается в различные виды классификаций.

ГИС различаются предметной областью информационного моделирования — городские или муниципальные (Urban GIS — UGIS), природоохранные (Environmental GIS), производственные (Manufacturing Facilities GIS — MFGIS) и т.д. Проблемная ориентация ГИС определяется решаемыми в ней научными и прикладными задачами — инвентаризация ресурсов (кадастр), анализ, оценка, мониторинг, управление и планирование, поддержка принятия решений.

Интегрированные ГИС (Integrated GIS — IGIS) совмещают функциональные возможности ГИС и систем цифровой обработки изображений (данных дистанционного зондирования) в единой интегрированной среде.

Масштабно-независимые ГИС (Multiscale GIS — MSGIS) основаны на множественных, представлениях пространственных объектов (Multiscale Representation), обеспечивая графическое или картографическое вопроизведение данных на любом уровне масштабирования на основе того набора данных, который обеспечивает наибольшее пространственное разрешение. Пространственно-временные ГИС (Spatio-temporal GIS — STGIS) оперируют пространственно-временными данными.

Реализация геоинформационных проектов (GIS Project), включает обычные этапы жизненного цикла:

· предпроектных исследований (Feasibility Study), в том числе изучение требований пользователя (User Requirements) и функциональных возможностей (Functional Facilities) используемых программных средств ГИС;

· технико-экономическое обоснование разработки ГИС;

· оценку соотношения " затраты/прибыль" (Costs/Benefits);

· системное проектирование ГИС (GIS Designing), включая стадию пилотного проекта (GIS Pilot Project);

· разработку (GIS Development);

· тестирование на небольшом территориальном фрагменте, или тестовом участке (Test Area);

· прототипирование или создание опытного образца (Prototyping);

· внедрение (GIS Implementation);

· введение в эксплуатацию и использование (Setting into Operation).

Функциональные возможности ГИС

В ГИС в целом выполняется пять основных функциональных процедур с данными: ввод, манипулирование, управление, запрос и анализ, визуализацию.

Ввод данных. Географические данные (числа, текст, изображения) для использования в ГИС вводятся в векторном или растровом виде, если такие данные уже существуют в подходящем цифровом формате, либо предварительно оцифровываются с помощью диджитайзера или сканера. Каждый элемент или объект изображения имеет координатную привязку. Тем самым, любые свойства и характеристики реальных объектов (моделей) или их элементов " привязаны" к местоположению объекта в координатной сетке. При этом всегда следует иметь в виду, что технологии оцифровки или занесения данных в конкретный тематический слой, а также наложение и сведение слоев могут сопровождаться значительными ошибками, которые в дальнейшем приведут к заметным искажениям картографических данных и визуализации результата (рис. 12.18).

Средства манипулирования представляют собой различные способы выделения, группировку и преобразования данных, например, приведение всей геоинформации к единому масштабу и проекции на определенный тематический слой для удобства совместной обработки. Для хранения, структурирования и управления данными в ГИС чаще всего используются реляционные базы данных с элементами OLAP-технологий (On Line Analytical Processing) и технологий создания отчетов (Report Creation).

Запрос и анализ можно выполнять на разных уровнях сложности — от самых простых вопросов: где находится объект и каковы его описательные свойства — до поисков и компиляции данных по сложным шаблонам и сценариям вида " А что если...". В современных ГИС имеются развитые средства анализа взаимной близости и наложения объектов, принадлежащим разным тематическим слоям.

Первый инструмент связан с выделением буферных зон вокруг заданных объектов по комбинации различных параметров (например: " Выделить населенные пункты, расположенные не далее двух километров от конкретного аэропорта" или " Рассчитать зоны поражения при аварии на АЭС и выделить населенные пункты, попадающие в эти зоны"). Второй позволяет рассчитывать пересечение, объединение, исключение и другие сочетания двух и более распределенных объектов (оверлейные операции) при сведении слоёв.

Визуализация. Результаты различных операций можно просто отображать на экране или же создавать (рисовать) новые объекты с любыми наборами атрибутивных характеристик. Развитые средства и способы визуализации позволяют ГИС легко управлять отображением данных. Традиционным результатом обработки, анализа и отображения пространственных географических данных является карта, которая дополняется отчетными документами, рельефными цветными изображениями реальных и смоделированных объектов, фотографиями, таблицами, диаграммами, видео клипами развития ситуации и другими мультимедийными средствами.

Кроме указанных базовых операций, современные ГИС имеют достаточно много специальных групп функций, реализующих пользовательские задачи: прокладку оптимального маршрута, поиск кратчайших расстояний, расчетные задачи пространственной статистики, создание моделей геологических структур, морских и воздушных течений и т. д.

Модели географических данных. Для графического представления географических данных, описывающих реальные объекты и их модели в ГИС, используются электронные карты и тематические описания. Параметры местоположения объектов и их отношений есть пространственные (метрические) данные, параметры временных и тематических свойств — атрибутивная (описательная) информация.

В основе моделей данных в ГИС лежит классификатор объектов карты. Он определяет состав и содержание метрических, семантических, тематических, динамических свойств объекта и их изобразительных средств. Система условных обозначений формируется с использованием палитры красок, текстуры линий и заливок, шаблонов знаков и шрифтов. В современных ГИС реализована технология послойного графического представления информации, она соответствует представлению координатных моделей в топологической форме (представление объектов и их связей в виде графа). Атрибутивная информация отображается на слое электронной карты числами, символами и их совокупностями — надписями. Связь координатных и атрибутивных данных устанавливается в БД через соответствующие идентификаторы (по умолчанию или через пользовательский интерфейс). Для представления географических объектов применяются растровые и векторные модели.

Растровая модель — отображение участков поверхности суши и океанов в виде дискретного набора элементов, составляющих нужную картину. Такие элементы называются пикселами (Picture Element), они образуют отображение тематического слоя электронной карты на экране монитора. Каждый пиксел занимает некоторую малую площадь в виде прямоугольника, имеет координаты центра (X, Y) в плоскости слоя карты, связанные с координатами точек географического объекта, и описание его свойств (яркость, цвет и плотность тона), соответствующих аналогичным свойствам объекта.

Растровые цифровые изображения могут быть получены непосредственно при цифровом фотографировании земной поверхности со спутников, либо при обработке аэрокосмических фотографий методами цифрового сканирования с использованием диджитайзеров. Такие изображения хороши для зрительного восприятия и удобны для многоаспектной обработки. Однако они занимают много места в памяти вычислительных устройств и плохо масштабируются — при многократном и многоразовом изменении масштаба, сжатии и дешифровке четкость изображений сильно ухудшается. Поэтому в тех случаях, где заранее оговаривается необходимость масштабирования изображений без потери четкости, применяется технология векторной графики.

Векторная модель — это структурно заданное графическое изображение пространственного объекта. Положение точек объекта задается координатами конца вектора (x, y, z) и описанием свойств этой точки. Отображение объекта задается совокупностью векторов. Так как конец вектора (точка) не имеет площади, то при многократном увеличении или уменьшении изображения объекта (масштабировании) искажения не происходит. Векторная графика оперирует точечными, линейными (дуги и контуры) и площадными (полигонными) моделями пространственных объектов.

Допустимы следующие формы векторной модели данных:

· цельнополигональная структура (топологическая структура типа " спагетти");

· линейно-узловая (графовая структура);

· реляционная (структура отношений);

· нерегулярная триангуляционная сеть.

Формирование топологии заключается в определении положения точек и узлов в выбранной системе координат на плоскости или в пространстве (для рельефных изображений) и цифровое кодирование взаимосвязей между точечными, линейными и площадными географическими объектами. В настоящее время применяются объектно-ориентированные модели баз географических данных (например, ArcGIS компании ESRI), формирующие классы объектов, классы отношений, геометрические сети и послойную топологию.

Инструменты реализации и поддержки ГИС

По своему назначению ГИС можно разделить на четыре широкие функциональные категории: простые инструменты составления карт и диаграмм; настольные компьютерные и встроенные ГИС-пакеты широкого применения; полнофункциональные системы; ГИС уровня всего предприятия (корпоративные системы).

Инструменты составления диаграмм данных и картирования. Средства этой категории дешевы и просты в использовании, но по некоторым функциональным возможностям могут быть вполне сравнимы с более сложными системами. Типичными примерами являются инструменты для электронных таблиц, например, Microsoft Map в Excel и Lotus Maps. Эти приложения доступны любому пользователю электронных таблиц MS Excel и Lotus Notes и дают возможность легко использовать функции тематического картирования — отображения на карте географической информации из своей базы данных. Любой менеджер за десять минут научится изготовлять карты, нужные для подготовки принятия делового решения.

Другой простой инструмент, но достаточно функциональный инструмент — Business Map. Он предназначен для пользователей, которым нужно больше, чем просто тематическое картирование. Business Map работает с данными наиболее популярных электронных таблиц и баз данных и поддерживает такие возможности анализа в области бизнеса и управления, как, например, пространственные запросы, управление отображаемым составом карты, определение и связывание координат, почтовых индексов и адресов реальных объектов. К этой же категории относятся и средства просмотра цифровых карт (Viewer Facilities). Для примера, можно привести Geomedia Viewer от Intergraph или бесплатный (Free) ArcExplorer, позволяющий просматривать и запрашивать данные ArcInfo, ArcView и SDE, в том числе и через Internet.

Существенным фактором, ограничивающим широкое использование более сложных ГИС в деловых задачах, является относительная трудность изучения программного обеспечения. Для устранения этого препятствие разработаны развитые пользовательские интерфейсы, дающие обычному пользователю мощные и понятные средства географического анализа.

Настольные компьютерные системы и встроенные ГИС-пакеты. В первой половине 1990-х годов рост продаж ГИС был в немалой степени обусловлен спросом именно на настольные и встроенные ГИС. И если первые системы настольного картографирования (Desktop Mapping) имели ограниченные возможности работы с географическими данными, то современные ГИС, " поставленные" на персональный компьютер или встроенные в состав другого программного средства, предлагает полный набор средств для анализа и управления данными.

К таким продуктам относятся: ArcView, Maplnfo, GeoMedia, GeoGraph/GeoDraw, которые имеют функциональные возможности современных СУБД и предоставляют средства для анализа, интеграции и отображения географических данных. Программный пакет типа ArcView можно, например, использовать для привязки пространственных данных (с помощью спутниковой системы позиционирования GPS или ГЛОНАСС), импортировать данные из других источников (картографические данные и информацию из государственных или корпоративных баз данных), выполнять комплексные статистические и модельные исследования, строить варианты сценариев развития ситуаций, производить в режиме On Line обработку полевых данных, полученных при геодезических съемках местности с лазерными теодолитами.

Рассмотрим кратко две наиболее типичные ГИС этого класса — ArcView и MapInfo.

ArcView имеет средства для выбора, просмотра и редактирования разнообразных географических данных, создания макетов и шаблонов карт с легендами, графиками и диаграммами, оцифровки карт с помощью сканера, связывания объектов карты с атрибутивной информацией в режиме Hot Link (с архивами изображений, полученных мультимедиа-средствами), адресного кодирования, распечатки картографических материалов.

ArcView напрямую работает со многими форматами данных, обеспечивает доступ к стандартным СУБД (Ingres, Sybase, Oracle, Informix), читает файлы форматов DXF и DWG, а также включает следующие функции: вызова удаленных процедур RPC (Unix), связи с другими приложениями через протокол DDE (Windows), подключения приложений на Visual Basic. Имеется также ряд стандартных приложений ArcView для инженерных изысканий, взаимодействия с GPS, SAP R3, представления данных в Internet.

Программный продукт MapInfo Professional (https://www.esti-map.ru) в настоящее время является одним из реальных лидеров ГИС в области цифрового картографирования. В дополнение к традиционным функциям для СУБД такого типа MapInfo позволяет собирать, хранить, отображать, редактировать и обрабатывать картографические данные с учетом пространственных и временных отношений объектов. В одном сеансе работы одновременно могут использоваться данные разных форматов. Источники данных могут быть:

· таблицы собственных баз данных MapInfo;

· данные в обменных векторных форматах САПР (для встроенных ГИС-приложений) и различных геоИС: AutoCAD (DXF, DWG), Intergraph/MicroStation Design, ESRI Shape, ARC/INFO Export,

· растровые карты в форматах GIF, JPEG, TIFF, PCX, BMP, PSD, ECW, BIL и GRID (GRA, GRD);

· данные, полученные с помощью GPS, ГЛОНАСС, электронных геодезических приборов (лазерные теодолиты и дальномеры);

· файлы Excel, Access, xBASE, Lotus 1-2-3 и текстовые файлы, в которых кроме атрибутивной (описательной) информации могут храниться географические координаты точечных объектов.

ГИС MapInfo может выступать в роли " картографического клиента" при работе с такими распространенными СУБД, как Oracle и DB2, так как поддерживает эффективный механизм взаимодействия с ними через протокол ODBC. Более того, доступ к данным из СУБД Oracle возможен и через внутренний интерфейс (OCI) этой базы данных.

В MapInfo есть " географическое" расширение встроенного языка запросов SQL, которое позволяет организовывать выборки с учетом пространственных отношений объектов — распределенность, вложенность, перекрытия, пересечения площадей объектов. Запросы к БД можно сохранять в виде шаблонов для дальнейшего использования. В MapInfo есть также возможность поиска и нанесения объектов на карту по координатам, адресу или системе различных установленных индексов.

Взаимодействие между Windows-приложениями позволяет интегрировать окно " Карты" MapInfo в программы, написанные на языках Delphi, Visual Basic, C++. Совместное использование MapInfo и среды разработки MapBasic дает возможность каждому пользователю создавать специфические приложения для решения конкретных прикладных задач.

Полнофункциональные системы. Полнофункциональные программные продукты берут начало из крупных государственных проектов 60-х и 70-х годов, которые реализовывались на крупных ЭВМ (Mainframe). Они использовались, в основном, аналитиками и специалистами по зарождающейся геоинформатике и были инструментом поддержки уникальных и специализированных исследований. Такими ГИС могли пользоваться лишь квалифицированные специалисты, понимающие и в программном обеспечении, и в принципах географии, и в проблемах конкретной прикладной области.

Сегодня положение изменилось — современные ГИС-инструменты реализуют методы геоинформатики, используя мощные программно-аппаратные средства: географические Web-серверы открытого доступа, инструменты сложного многофакторного пространственного анализа, устройства для формирования точнейших электронных и подготовки высококачественных бумажных карт.

Полнофункциональные ГИС содержат полный набор средств геопространственной обработки, включая сбор данных, их интеграцию, хранение, автоматическую обработку, редактирование, создание и поддержку топологии, пространственный анализ, связь с СУБД, визуализацию и создание твердых копий любой картографической информации. Система работает как на рабочих станциях под управлением Windows NT, так и RISC-Unix. В дополнение к базовому набору ArcInfo имеется ряд модулей, расширяющих возможности обработки геоданных в различных областях применения.

Корпоративные системы. Корпоративная ГИС — это, как правило, распределенная ИС с рабочими местами, выполненными по технологии " клиент-сервер". ГИС в рамках предприятия может быть реализована с использованием серверов пространственных данных Spatial Database Engine (SDE), работающих с клиентскими приложениями типа настольных приложений ArcView и ArcInfo. Такие ГИС позволяют оперировать огромными объемами географических и атрибутивных данных и поставлять эти данные любому пользователю локальной или глобальной сети. Кроме того, поскольку серверы пространственных данных обычно реализованы в стандартных реляционных СУБД, они переносятся в большинство сред баз данных. Тем самым, инструменты, подобные SDE и встроенные в КИС могут использоваться, чтобы:

· строить быстродействующие ГИС-приложения;

· включать сложные функции обработки географических данных в прикладные программы;

· поставлять прикладные программы на целом ряде платформ программного обеспечения и оборудования;

· увеличивать доступность географических и атрибутивных данных и возможность их обработки и интерпретации для принятия деловых решений;

· интегрировать управление географическими данными в существующие корпоративные системы управления базами данных.

Такие приложения наиболее важны для компаний, которые управляют большими инфраструктурами или инженерными коммуникациями (например, сетями энергоснабжения), работают в сфере транспорта и перевозок или занимаются разработкой природных ресурсов — ведущие нефтяные и газовые компании повсеместно используют ГИС, чтобы управлять изысканиями, производством и распределением ресурсов.

ГИС корпоративного типа тесно связана с рядом других типов ИС — с системами автоматического проектирования (Computer Aided Design — CAD), модулями систем управления деятельностью предприятия (Enterprise Resource Planning — ERP), системами управления перевозками и поставками (Logistic and Supply Chain Management — LSCM). Ее основное отличие заключается в способности, собирать, обрабатывать, манипулировать пространственными данными и проводить квалифицированный анализ.

Широкую известность в кругах специалистов в области геоинформатики, приобрела свободно распространяемая под лицензией GNU Public License геоИС GRASS — Geographic Resources Analysis Support System разработка, модернизация и техническое сопровождение которой, ведется международной командой разработчиков. В текущей версии GRASS представляет собой модульную многофункциональную геоИС универсального применения [https://grass.itc.it/].

На интерфейс системы накладывает определенный отпечаток изначальная ориентация GRASS на Unix-системы, охарактеризовать примененное решение можно как сочетание командного и оконного интерфейсов. Причем общая концепция интерфейса угадывается в версиях под различные платформы. Помимо стандартного графического интерфейса пользователя возможно применение различных оболочек GUI, например, широко известная оболочка QGIS для ядра GRASS. Существует также Java-версия системы GRASS — JAVAGRASS, которая обеспечивает уникальную межплатформенность. Всё это обеспечило успех и широкую применимость этой геоинформационной системы.

Связанные технологии: GIS, GPS и ГЛОНАСС

Системы управления базами данных ГИС предназначены для хранения и управления всеми типами данных, включая географические (пространственные) данные. Эти данные получены чаще всего методами пространственного дистанционного зондирования — проведения измерений координат объектов на земной поверхности с использованием лазерных дальномеров на земных пунктах наблюдения и отражателей, расположенных борту искусственных спутников Земли (ИСЗ). Используются также приемники системы глобального позиционирования и другие радиометрические устройства, работающие на измерении эффекта Доплера. Эти устройства собирают данные в виде наборов координат или изображений (преимущественно цифровых) и обеспечивают широкие возможности обработки, анализа и визуализации полученных данных.

Разработки концепции NAVSTAR GPS (NAVigation Satellite Timing And Ranging Global Positioning System) начались в 1973 году по инициативе Министерства обороны США. Самые современные на тот момент радионавигационные системы — наземные Loran-C и Omega и спутниковая Transit — перестали удовлетворять требованиям в отношении точности, всепогодности, круглосуточной работы и зоны охвата. В феврале 1978 года был запущен первый экспериментальный спутник GPS. К середине 1993 года на орбитах находились уже 24 спутника, что было достаточно для обеспечения непрерывной навигации в любой точке Земли. Об окончательном вводе системы в эксплуатацию объявили только в июле 1995 года

Система GPS состоит из трех частей: космической, наземной и пользовательского оборудования.

Космическая часть — это 24 спутника, движущихся по шести орбитам. Наклон орбит к земному экватору — 55 градусов, угол между плоскостями орбит — 60 градусов. Высота орбит 20180 км, период обращения — 12 ч. Мощность спутникового передатчика 50 Вт. Если один из них вышел из строя, то остальные способны, передвигаясь на орбитах, заполнять бреши в системе. Важным элементом спутника являются атомные часы, рубидиевые и цезиевые, по четыре на каждом, которые задают бортовую шкалу времени. Эти шкалы постоянно синхронизируются с наземными высокоточными стандартами времени. Каждый спутник идентифицируется номером (Pseudo Random Number — PRN), который отображается на приемнике GPS.

Наземная часть состоит из 4 станций слежения, расположенных на тропических островах. Они отслеживают видимые спутники и передают данные на Главную станцию управления и контроля на авиабазе в Колорадо-Спрингс для обработки на сложных программных моделях орбит, которые называются эфемеридами. Через наземные станции данные передаются обратно на спутники, а затем спутник передает их пользовательским приемникам GPS.

Пользовательская часть включает в себя приемник сигналов со спутника, дешифратор и программный модуль для вычисления координат объекта, на котором находится приемник. Точность определения координат зависит от многих факторов — точности передающих и принимающих устройств, бортовых и наземных шкал времени, состояния ионосферы и тропосферы, солнечной активности, влажности и давления в атмосфере, но, прежде всего, от геометрии расположения спутников в поле зрения приёмной антенны. Измеряя расстояния (псевдодальности) r1 и r2 дальнометрическими или радиометрическими способами для нескольких спутников и уравнивая их методами спутниковой геодезии, можно получить координаты наземных пунктов слежения и поправки к элементам орбит спутников.

Спутниковая геометрия измеряется фактором PDP (Position Dilution of Precision) Идеальному расположению спутников соответствует PDP=1, большие значения говорят о плохой спутниковой геометрии. Значение PDP используется как множитель для других ошибок при уравнивании наблюдений. Каждая измеренная приемником псевдодальность имеет свою погрешность, зависящую от атмосферных помех, ошибок в эфемеридах, отраженного сигнала и т.д. Так, если предполагаемые значения этих ошибок в сумме составляют около 50 метров и PDOP =1.5, то ожидаемая ошибка определения места будет 75 метров. Если приемник " поймал" четыре спутника, и все они находятся близко к зениту места наблюдения, то такая спутниковая геометрия " плохая" и ошибка результата составит 90-150 метров. С теми же 4-мя спутниками точность намного возрастает, если они расположены равномерно по сторонам горизонта на высоте от 20 до 50 градусов дуги. В этом случае точность достигает 30 метров, что составляет примерно 1 секунду дуги — а это уже неплоха я точность.

Современные стационарные GPS обеспечивают при обработке пространственных данных в ГИС точность положений до нескольких долей секунды и точность определения расстояний — до нескольких миллиметров. Понятно, что такая точность нужна для научных и оборонных прикладных задач. Авиационные и морские GPS, устанавливаемые на самолетах и судах, обеспечивают точность до 1 метра, для непрофессионального использования в настоящее время вполне хватает точности в несколько метров. Такие GPS- устройства монтируются в мобильные телефоны, в системы автомобильной навигации и т.д. Окончательная погрешность работы системы {GPS — GIS — электронная карта} будет зависеть от точности каждого элемента системы. Нелишне будет упомянуть, что координатные системы карт — такие как, например, Map Datum — связаны с разными моделями земного эллипсоида, используемыми при построении карт в различных странах. Разница между ними может достигать 500 м. При работе с GPS и электронной картой пользователь должен учитывать это и делать соответству ющие поправки.

В России в настоящее время развертывается глобальная навигационная спутниковой система (ГЛОНАСС), аналогичная американской GPS и работающая на тех же принципах. Разница состоит в системах кодирования и дешифровки сигналов и в алгоритмах обработки пространственных данных.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.