Главная страница
Случайная страница
Разделы сайта
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Географическое распределение давления. Центры действия атмосферы. Сезонные изменения давления.
Атмосферное давление распределяется по Земле зонально. В январе в приэкваториальной части земной поверхности, где всегда тепло, легкий, теплый воздух поднимается вверх, в результате вдоль экватора образуется область низкого давления, которая наиболее выражена над материками (Южно-Африканская депрессия, Южно-Американская и Австралийская депрессии). В тропические широты (около 30°) нагретый экваториальный воздух приходит поверху и, охлаждаясь, опускается вниз, формируя нисходящие потоки. В результате в этих широтах формируются области повышенного атмосферного давления, антициклоны (Азорский, Северо-Тихоокеанский, Южно-Тихоокеанский, Южно-Атлантический, Южно-Индийский). В умеренных и субарктических широтах северного полушария изобары искривляются согласно расположению континентальных антициклонов (Азиатского максимума, Канадского антициклона, Североамериканского антициклона). В южном полушарии антициклоны формируются над холодными областями океанов – Южно-Тихоокеанский, Южно-Атлантический, Южно-Индийский антициклоны. Эти регионы характеризуются повышенным давлением. Далее к югу наблюдается понижение давления, которое достигает минимальных значений (менее 988 мбар) в Субантарктической депрессии, сформированной движением теплого антициклона с запада на восток вдоль побережья Антарктиды. Над поверхностью Антарктиды образуется гигантский антициклон (Антарктический антициклон), который обеспечивает в регионе сухую холодную погоду с низкими температурами.
В июле тропическая область низкого давления смещается к Евразии из-за нагревания материка, образуя Азиатскую депрессию над Афганистаном. Благодаря прогреванию материков северного полушария, над ними в целом устанавливается низкое атмосферное давление, а области высокого давления смещаются в Атлантический и Тихий океаны (Азорский и Северо-Тихоокеанский антициклоны). В южном полушарии в июле устанавливаются зимние антициклоны, принося холодные массы воздуха от океанских максимумов к материкам. Минимальное давление приурочено к Субантарктической депрессии, а над Антарктидой также без изменения остается антициклон.
Центры действия атмосферы, области высокого или низкого атмосферного давления на картах распределения давления по земному шару; статистический результат преобладания в том или ином районе антициклонов или циклонов. Различают постоянные и сезонные Ц. д. а. Постоянные (перманентные) Ц. д. а. — экваториальная депрессия, субтропические антициклоны, депрессии субполярных широт, полярные антициклоны; сезонные — зимние антициклоны и летние депрессии над материками в средних широтах.
39. Изменения давления и ветер. Скорость, сила и направление ветра. Порывистость ветра. Влияние препятствий на ветер. Шкала Бофорта.
Ветер характеризуется вектором скорости. На практике под скоростью ветра подразумевается только числовая величина скорости; именно ее мы будем в дальнейшем называть скоростью ветра, а направление вектора скорости — направлением ветра. Скорость ветра выражается в метрах в секунду, в километрах в час (в особенности при обслуживании авиации) и в узлах (в морских милях в час). Чтобы перевести скорость из метров в секунду в узлы, достаточно умножить число метров в секунду на 2. Различают сглаженную скорость ветра за некоторый небольшой промежуток времени, в течение которого производятся наблюдения, и мгновенную скорость ветра, которая вообще сильно колеблется и временами может быть значительно ниже или выше сглаженной скорости. Анемометры обычно дают значения сглаженной скорости ветра, и в дальнейшем речь будет идти именно о ней.
Указать это направление можно, назвав либо точку горизонта, откуда дует ветер, либо угол, образуемый направлением ветра с меридианом места, т. е. его азимут. В первом случае различают 8 основных румбов горизонта: север, северо-восток, восток, юго-восток, юг, юго-запад, запад, северо-запад — и 8 промежуточных румбов между ними: север-северо-восток, восток-северо-восток, восток-юго-восток, юг-юго-восток, юг-юго-запад, запад-юго-запад, запад-северо-запад, север-северо-запад (рис. 68). 16 румбов, указывающих направление, откуда дует ветер, имеют следующие сокращенные обозначения, русские и международные: Если направление ветра характеризуется углом его с меридианом, то отсчет ведется от севера по часовой стрелке. Таким образом, северу будет соответствовать 0° (360°), северо-востоку 45°, востоку 90°, югу 180°, западу 270°.
Ветер постоянно и быстро меняется по скорости и направлению, колеблясь около каких-то средних величин. Причиной этих колебаний (пульсаций, илифлуктуации) ветра является турбулентность, о которой говорилось в главе второй. Колебания эти можно регистрировать чувствительными самопишущими приборами. Ветер, обладающий резко выраженными колебаниями скорости и направления, называют порывистым. При особенно сильной порывистости говорят о шквалистом ветре.
Порывистость тем больше, чем больше турбулентность. Следовательно, она сильнее выражена над сушей, чем над морем; особенно велика в районах со сложным рельефом местности; больше летом, чем зимой; имеет послеполуденный максимум в суточном ходе. В свободной атмосфере турбулентность может приводить к болтанке самолетов. Болтанка особенно велика в сильно развитых облаках конвекции. Но она резко возрастает и при отсутствии облаков в зонах так называемых струйных течений.
Всякое препятствие, стоящее на пути ветра, будет как-то на него влиять, возмущать поле ветра. Такие препятствия могут быть и крупномасштабными, как горные хребты, и мелкомасштабными, как здания, деревья, лесные полосы и т. д. Прежде всего препятствие отклоняет воздушное течение: оно должно либо обтекать препятствие с боков, либо перетекать через него сверху. При этом горизонтальное обтекание происходит в большей степени. Перетекание происходит тем легче, чем неустойчивее стратификация воздуха, т. е. чем больше вертикальные градиенты температуры в атмосфере. Перетекание воздуха через препятствия приводит к очень важным следствиям, таким, как увеличение облаков и осадков на наветренном склоне горы при восходящем движении воздуха и, наоборот, рассеяние облачности на подветренном склоне при нисходящем движении. Обтекая препятствие, ветер перед ним ослабевает, но с боковых сторон усиливается, особенно у выступов препятствий (углы зданий, мысы береговой линии и пр.). Линии тока в таких местах сгущаются. За препятствием скорость ветра уменьшается, там имеется ветровая тень.
Перед препятствием и за ним иногда создаются так называемые наветренные и подветренные вихри. Влияние полезащитных лесных полос на микроклиматические условия полей связано в первую очередь с тем ослаблением ветра в приземных слоях воздуха, которое создают лесные полосы. Воздух перетекает поверх лесной полосы, и, кроме того, скорость его ослабевает при просачивании его сквозь просветы в полосе. Поэтому непосредственно за полосой скорость ветра резко ослаблена. На более далеком расстоянии за полосой скорость ветра увеличивается. Однако первоначальная, неослабленная скорость ветра восстанавливается только на расстоянии, равном 40—50-кратной высоте деревьев полосы, если полоса ажурная (несплошная). Влияние сплошной полосы распространяется на расстояние, равное 20—30-кратной высоте деревьев и меньше.
Баллы Бофорта
| Словесное определение силы ветра
| Средняя скорость ветра, м/с
| Средняя скорость ветра, км/ч
| Средняя скорость ветра, узлов
| Действие ветра
| на суше
| на море
|
| Штиль
| 0—0, 2
| < 1
| 0—1
| Безветрие. Дым поднимается вертикально, листья деревьев неподвижны
| Зеркально гладкое море
|
| Тихий
| 0, 3—1, 5
| 1—5
| 1—3
| Направление ветра заметно по относу дыма, но не по флюгеру
| Рябь, пены на гребнях волн нет. Высота волн до 0, 1 м
|
| Лёгкий
| 1, 6—3, 3
| 6—11
| 4—6
| Движение ветра ощущается лицом, шелестят листья, приводится в движение флюгер
| Короткие волны максимальной высотой до 0, 3 м, гребни не опрокидываются и кажутся стекловидными
|
| Слабый
| 3, 4—5, 4
| 12—19
| 7—10
| Листья и тонкие ветви деревьев всё время колышутся, ветер развевает лёгкие флаги
| Короткие, хорошо выраженные волны. Гребни, опрокидываясь, образуют стекловидную пену. Изредка образуются маленькие барашки. Средняя высота волн 0, 6 м
|
| Умеренный
| 5, 5—7, 9
| 20—28
| 11—16
| Ветер поднимает пыль и мусор, приводит в движение тонкие ветви деревьев
| Волны удлинённые, барашки видны во многих местах. Максимальная высота волн до 1, 5 м
|
| Свежий
| 8, 0—10, 7
| 29—38
| 17—21
| Качаются тонкие стволы деревьев, движение ветра ощущается рукой
| Хорошо развитые в длину, но не крупные волны, максимальная высота волн 2, 5 м, средняя — 2 м. Повсюду видны белые барашки (в отдельных случаях образуются брызги)
|
| Сильный
| 10, 8—13, 8
| 39—49
| 22—27
| Качаются толстые сучья деревьев, гудят телеграфные провода
| Начинают образовываться крупные волны. Белые пенистые гребни занимают значительные площади, вероятны брызги. Максимальная высота волн — до 4 м, средняя — 3 м
|
| Крепкий
| 13, 9—17, 1
| 50—61
| 28–33
| Качаются стволы деревьев
| Волны громоздятся, гребни волн срываются, пена ложится полосами по ветру. Максимальная высота волн до 5, 5 м
|
| Очень крепкий
| 17, 2—20, 7
| 62—74
| 34–40
| Ветер ломает сучья деревьев, идти против ветра очень трудно
| Умеренно высокие длинные волны. По краям гребней начинают взлетать брызги. Полосы пены ложатся рядами по направлению ветра. Максимальная высота волн до 7, 5 м, средняя — 5, 5 м
|
| Шторм
| 20, 8—24, 4
| 75—88
| 41–47
| Небольшие повреждения, ветер начинает разрушать крыши зданий
| Высокие волны (максимальная высота — 10 м, средняя — 7 м). Пена широкими плотными полосами ложится по ветру. Гребни волн начинают опрокидываться и рассыпаться в брызги, которые ухудшают видимость
|
| Сильный шторм
| 24, 5—28, 4
| 89—102
| 48–55
| Значительные разрушения строений, ветер вырывает деревья с корнем
| Очень высокие волны (максимальная высота — 12, 5 м, средняя — 9 м) с длинными загибающимися вниз гребнями. Образующаяся пена выдувается ветром большими хлопьями в виде густых белых полос. Поверхность моря белая от пены. Сильный грохот волн подобен ударам
|
| Жестокий шторм
| 28, 5—32, 6
| 103—117
| 56–63
| Большие разрушения на значительном пространстве. Наблюдается очень редко.
| Видимость плохая. Исключительно высокие волны (максимальная высота — до 16 м, средняя — 11, 5 м). Суда небольшого и среднего размера временами скрываются из вида. Море всё покрыто длинными белыми хлопьями пены, располагающимися по ветру. Края волн повсюду сдуваются в пену
|
| Ураган
| > 32, 6
| > 117
| > 64
| Огромные разрушения, серьезно повреждены здания, строения и дома, деревья вырваны с корнями, растительность уничтожена. Случай очень редкий.
| Исключительно плохая видимость. Воздух наполнен пеной и брызгами. Море всё покрыто полосами пены
|
40. Влияние барического градиента и силы Кориолиса на ветер. Геострофический ветер, градиентный ветер, термический ветер. Влияние трения на скорость и направление ветра.
При геострофическом ветре, кроме движущей силы градиента G = - 1/ρ * dp/dn на воздух действует еще отклоняющая сила вращения Земли A = 2ω *sinφ *V. Поскольку движение предполагается равномерным, обе силы уравновешиваются, т. е. равны по величине и направлены взаимно противоположно. Отклоняющая сила вращения Земли в северном полушарии направлена под прямым углом к скорости движения вправо. Отсюда следует, что сила градиента, равная ей по величине, должна быть направлена под прямым углом к скорости влево. А так как под прямым углом к градиенту лежит изобара, то это значит, что геострофический ветер дует вдоль изобар, оставляя низкое давление слева.
Градиентный ветер Если движение воздуха происходит без действия силы трения, но криволинейно, то это значит, что, кроме силы градиента и отклоняющей силы вращения Земли, появляется еще центробежная сила, выражающаяся как С = V2/r, где V — скорость, a r — радиус кривизны траектории движущегося воздуха. Направлена центробежная сила по радиусу кривизны траектории наружу, в сторону выпуклости траектории. Тогда в случае равномерного движения должны уравновешиваться уже три силы, действующие на воздух, — градиента, отклоняющая и центробежная.
Если барический градиент на нижнем уровне совпадает по направлению с температурным градиентом в вышележащей атмосфере, то он с высотой возрастает, не меняя направления. В этом случае изобары на всех уровнях будут совпадать по направлению с изотермами, а термический ветер будет совпадать по направлению с ветром на нижнем уровне. Ветер при этом возрастает с высотой; не меняя своего направления. V0 — ветер на нижнем уровне, Δ V — термический ветер, V — ветер на верхнем уровне, T = const — изотерма. Если барический градиент на нижнем уровне противоположен по направлению температурному градиенту, то он будет соответственно убывать с высотой. Вместе с ним, не меняя направления, будет убывать и ветер до тех пор, пока он не превратится в нуль и не перейдет на противоположное направление. Если же градиенты барический и температурный образуют между собой угол, меньший 180°, то термический ветер будет направлен вправо или влево относительно ветра на нижнем уровне, смотря по тому, в какую сторону барический градиент отклоняется от температурного. Поэтому с высотой ветер, приближаясь к изотерме, вращается либо вправо, либо влево. В восточной (передней) части циклона, где барический градиент направлен приблизительно к западу, а температурный — к северу, ветер, приближаясь к изотерме, с высотой вращается вправо; в тыловой (западной) части циклона — влево. В антициклоне будет наоборот. Теория термического ветра относится, строго говоря, к градиентному ветру. Но установленные закономерности вполне оправдываются и для действительных условий в атмосфере.
Вл и яние трения на скорость и направление ветра
Скорость ветра уменьшается вследствие трения настолько, что у земной поверхности (на высоте флюгера) над сушей она примерно вдвое меньше, чем скорость геострофического ветра, рассчитанная для того же барического градиента. Например, в Берлине средняя годовая скорость ветра у земной поверхности 4, 8 м/сек, а средняя скорость геострофического ветра, вычисленного по приземным барическим градиентам, 9, 5 м/сек. Над морем скорость действительного ветра составляет около двух третей от скорости геострофического ветра. С высотою сила трения быстро убывает и скорость ветра поэтому возрастает, пока на высоте, близкой к 1000 м, не становится очень близкой к скорости геострофического ветра, по крайней мере всреднем. В Берлине средняя годовая скорость ветра на высоте 1000 м равна 10, 2 м/сек, т. е. немногим больше, чем приземная скорость геострофического ветра. Сила трения влияет и на направление ветра. Представим себе равномерное прямолинейное движение воздуха при наличии силы трения (геотриптический ветер).Это значит, что должны уравновешиваться три силы: градиента, отклоняющая и трения (рис. 79). Так как сила трения направлена противоположно скорости, то она не лежит на одной прямой с отклоняющей силой вращения Земли. Поэтому и сила градиента, уравновешивающая сумму двух остальных сил, не может лежать на одной прямой с отклоняющей силой. Если представить себе равномерное движение воздуха при круговых изобарах и при наличии силы трения, мы придем к аналогичному выводу. И в этом случае сила трения не совпадает по направлению с отклоняющей силой; поэтому и сила барического градиента не лежит на одной прямой с отклоняющей силой. Скорость ветра также будет отклоняться от изобар, имея составляющую, направленную по барическому градиенту. При этом в циклоне, где градиенты направлены от периферии к центру, ветер тоже будет иметь составляющую, направленную к центру. Она присоединяется к составляющей, направленной по изобарам против часовой стрелки. Поэтому в нижних слоях циклона ветер будет дуть против часовой стрелки, втекая от периферии к центру. В антициклоне же составляющая по изобарам будет направлена по часовой стрелке, и к ней присоединяется составляющая, направленная по градиенту наружу, от центра антициклона к периферии. Ветер в нижних слоях антициклона будет дуть по часовой стрелке, одновременно вынося воздух изнутри антициклона к периферии. Проведя линии тока в нижних слоях циклона, мы увидим, что они представляют собой спирали, закручивающиеся против часовой стрелки и сходящиеся к центру циклона. Центр циклона будет для линий тока точкой сходимости. В нижних слоях антициклона линии тока представляют собой спирали, расходящиеся по часовой стрелке от центра антициклона. Последний будет для линий тока точкой расходимости (рис. 80). Понятно, что в южном полушарии спиралеобразные линии тока будут направлены в циклоне по часовой стрелке и в антициклоне против часовой стрелки. Но составляющая скорости ветра, нормальная к изобарам, будет и там в циклоне направлена внутрь, а в антициклоне наружу.
|