Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Основные теоремы дифференциального исчисления






 

Теорема. (Ролль) Если функция непрерывна на отрезке , дифференцируема на интервале и значения функции на концах отрезка равны , то на интервале существует точка , , в которой производная функция равная нулю: .

Геометрический смысл теоремы Ролля состоит в том, что при выполнении условий теоремы на интервале существует точка такая, что в соответствующей ей точке кривой касательная параллельна оси . Таких точек на интервале может быть несколько, но теорема утверждает существование по крайней мере одной такой точки.

Доказательство. По свойству функций, непрерывных на отрезке функция на отрезке принимает наибольшее и наименьшее значения. Обозначим эти значения и соответственно. Возможны два различных случая и .

Пусть . Тогда функция на отрезке сохраняет постоянное значение и в любой точке интервала ее производная равна нулю. В этом случае за можно принять любую точку интервала.

Пусть . Так как значения на концах отрезка равны, то хотя бы одно из значений или функция принимает внутри отрезка . Обозначим через точку, в которой . Так как - наибольшее значение функции, то для любого (будем считать, что точка находится внутри рассматриваемого интервала) верно неравенство:

.

При этом Но так как по условию производная в точке существует, то существует и предел .

Т.к. и , то можно сделать вывод:

Теорема доказана.

 

Теорема Ролля имеет несколько следствий:

1) Если функция на отрезке удовлетворяет теореме Ролля, причем , то существует по крайней мере одна точка , такая, что . Т.е. между двумя нулями функции найдется хотя бы одна точка, в которой производная функции равна нулю.

2) Если на рассматриваемом интервале функция имеет производную - го порядка и раз обращается в нуль, то существует по крайней мере одна точка интервала, в котором производная – го порядка равна нулю.

Теорема. (Лагранж) Если функция непрерывна на отрезке и дифференцируема на интервале , то на этом интервале найдется по крайней мере одна точка такая, что .

Это означает, что если на некотором промежутке выполняются условия теоремы, то отношение приращения функции к приращению аргумента на этом отрезке равно значению производной в некоторой промежуточной точке.

Отношение равно угловому коэффициенту секущей .

у

В

А

0 а e b x

Если функция удовлетворяет условиям теоремы, то на интервале существует точка такая, что в соответствующей точке кривой касательная параллельна секущей, соединяющей точки и . Таких точек может быть и несколько, но одна существует обязательно.

Доказательство. Рассмотрим некоторую вспомогательную функцию

Уравнение секущей АВ можно записать в виде:

Функция удовлетворяет теореме Ролля. Действительно, она непрерывна на отрезке и дифференцируема на интервале . По теореме Ролля существует хотя бы одна точка , такая что .

Так как , то , следовательно

.

Теорема доказана.

Определение. Выражение называется формулой

Лагранжа или формулой конечных приращений.

В дальнейшем эта формула будет очень часто применяться для доказательства самых разных теорем. Иногда формулу Лагранжа записывают в несколько другом виде:

,

где , .

Теорема. (Коши) Если функции и непрерывны на отрезке и дифференцируемы на интервале и на интервале , то существует по крайней мере одна точка , , такая, что

.

Т.е. отношение приращений функций на данном отрезке равно отношению производных в точке .

Доказательство. Рассмотрим вспомогательную функцию

,

удовлетворяющая на отрезке условиям теоремы Ролля. Очевидно, что при и . Тогда по теореме Ролля существует такая точка , такая, что . Так как

, то

С другой стороны . Следовательно, .

Теорема доказана.

Следует отметить, что рассмотренная выше теорема Лагранжа является частным случаем (при ) теоремы Коши. Доказанная нами теорема Коши очень широко используется для раскрытия так называемых неопределенностей. Применение полученных результатов позволяет существенно упростить процесс вычисления пределов функций, что будет подробно рассмотрено ниже.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.