Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Эпсилон-равновесие






    Материал из Википедии — свободной энциклопедии

    Перейти к: навигация, поиск

    ε -равновесие в теории игр — профиль стратегий игроков некооперативной игры, приблизительно удовлетворяющий условиям равновесия Нэша.

    Содержание
    • 1 Определение
    • 2 Пример
    • 3 Ссылки
    • 4 Литература

    Определение

    Для заданной некооперативной игры и неотрицательного действительного параметра ε, профиль стратегий называется ε -равновесием, если ни один игрок не может, изменяя свою стратегию, достичь увеличения своего ожидаемого выигрыша более чем на ε. Любое равновесие Нэша представляет собой ε -равновесие для ε = 0.

    Формально, пусть — игра N лиц со множествами стратегий игроков и вектором функций выигрыша u. Набор стратегий является -равновесием в игре G, если:

    для всех

    Пример

    Понятие ε -равновесия используется в теории стохастических игр с неограниченным числом повторений. Следующие примеры демонстрируют игры, не имеющие равновесия Нэша, но обладающие ε -равновесием для любого положительного ε.

    Простейшим примером является следующий вариант игры «Орлянка», предложенный Г. Эвереттом. Игрок 1 выбирает сторону монеты, игрок 2 должен ее угадать. Если игрок 2 угадывает правильно, он выигрывает эту монету и игра завершается. В противном случае, если был загадан «орел», игра заканчивается с нулевыми выигрышами, если была загадана «решка», игра повторяется. При бесконечном повторении игры оба участника получают нулевые выигрыши.

    Для любого ε > 0 и профиля стратегий, при котором игрок 2 называет «орел» с вероятностью ε и «решку» с вероятностью 1-ε (на любом шаге игры, независимо от предыстории), является ε -равновесием в этой игре. Ожидаемый выигрыш игрока 2 при этом не менее 1-ε. Однако, нетрудно видеть, что ни одна стратегия игрока 2 не может гарантировать ожидаемый выигрыш, равный 1. Следовательно, данная игра не имеет равновесия Нэша.

    Ссылки

    • Everett, H. Recursive Games // In: H.W. Kuhn and A.W. Tucker, eds. Contributions to the theory of games. — Vol. III, volume 39 of Annals of Mathematical Studies. — Princeton University Press, 1957.

    Литература

    • Петросян Л. А,, Зенкевич Н.А., Семина Е.А. Теория игр: Учеб. пособие для ун-тов. — М.: Высш. шк., Книжный дом «Университет», 1998. — С. 304. — ISBN 5-06-001005-8, 5-8013-0007-4





    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.