Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






V. Политическая экономия социализма 11 страница






ПОЛУНЕПРЕРЫВНАЯ ФУНКЦИЯ, понятие математич. анализа. П. ф. снизу (сверху) в точке хо наз. функция, для
[ris]

по абсолютной величине!). Функция, полунепрерывная и снизу и сверху, непрерывна в обычном смысле. Ряд свойств П. ф. аналогичен свойствам непрерывных функций (см. Непрерывная функция). Напр.: 1) если f(x) и g (х) П. ф. снизу, то и их сумма и произведение П. ф. снизу; 2) П. ф. снизу на отрезке достигает своего наименьшего значения. Для рядов П. ф. снизу верно, напр., след, утверждение: если un=> 0 и все ип(х) П. ф. снизу, то сумма ряда СУММА ОТ n=1 ДО БЕСКОНЕЧНОСТИ (ип(х)) П. Ф. снизу П. ф. принадлежат к функциям первого класса по Бэра классификации.

ПОЛУНИН Алексей Иванович [19.9 (1.10). 1820, Бежецк, -3(15).1888, Москва], русский патолог. В 1842 окончил мед. ф-т Моск. ун-та; с 1849 проф. этого ун-та, где в том же году основал кафедру патологич. анатомии. В 1869 создал кафедру общей патологии и первым в России начал читать самостоят, курс общей патологии. Дал патологоанатомич. описание холеры, первый установил на основании многочисл. вскрытий излечимость лёгочного туберкулёза. Будучи деканом мед. ф-та (1863-78), провёл ряд прогрессивных мероприятий по дифференцированному преподаванию мед. дисциплин (организация спец. клиник). Президент Моск. физико-мед. об-ва (1866-70). Один из первых в России медяков-публицистов, редактор и издатель (1851-59) -" Московского врачебного журнала", где впервые на рус. языке была опубликована " Целлюлярная патология" Р. Вирхова.

Соч.: Рассуждения о холере, М., 1848; Введение в патологию, " Московский врачебный журнал", 1852, кн. 1 - 2; Об отношениях, в которых находятся анатомия, физиология, патология и терапия в медицинской практике, там же, 1853, кн. 1.

Лит.: Пионтковский И. А., А. И. Полунин, М., 1949.

ПОЛУНИН Фёдор Афанасьевич (гг. рожд. и смерти неизв.), русский географ. В 1771-74 воевода в г. Верее. Составитель русского географического словаря - " Географического лексикона Российского государства..." (1773), который служил справочником по физич. и эко-номич. географии России до опубликования " Географическо-статистического словаря Российской империи" П. Семёнова (т. 1-5, 1862-83).

ПОЛУНИЦА, один из видов рода земляника с ароматными зеленовато-красными плодами.

ПОЛУНОЧНОЕ, посёлок гор. типа в Свердловской обл. РСФСР, подчинён Ивдельскому горсовету. Расположен на вост. склоне Сев. Урала. Ж.-д. станция в 23 км к С. от г. Ивдель. Добыча железной руды. Леспромхоз.

ПОЛУОБЕЗЬЯНЫ (Prosimii), подотряд млекопитающих отряда приматов. 6 семейств: тупайи (нек-рые зоологи относят их к насекомоядным), лемуровые, ин-дриевые (типичный представитель - ин-дри), руконожки (с 1 видом - руконожка), лориевые и долгопяты. Представлены 26 родами, объединяющими ок. 50 видов. Размеры тела от 13 см (мышиные лемуры) до 70 см (индри); весят от 60-100 г (мышиные лемуры) до 2 кг (кошачий лемур). Хвост у большинства длинный, у лориевых - короткий или отсутствует. Передние конечности, как правило, короче задних. Большие пальцы кисти и стопы 6. ч. подвижны и могут противопоставляться остальным (исключение составляют тупайи). Мех густой и часто ярко окрашен. Мозг с малым количеством борозд и извилин. Зубов у большинства 36, у тупай 38, у долгопята 34. Сосков 1-3 пары. Обитают в тропиках Африки, на Мадагаскаре, а также в Азии и на о-вах Малайского архипелага. Живут гл. обр. на деревьях. Рождают 1-3 детёнышей. Численность мн. видов (особенно на Мадагаскаре) резко сокращается (необходима охрана).

ПОЛУОСЛЫ, подрод непарнокопытных животных рода лошадей; представлен куланом. Ряд зоологов включает П. в подрод настоящих лошадей; нек-рые выделяют их в самостоятельный род.

ПОЛУОСТРОВ, участок суши, окружённый с трёх сторон водой, а с четвёртой стороны соединённый с материком или островом. В большинстве случаев П. составляет в геологич. отношении одно целое с материком.

ПОЛУОСЬ, вал ведущего моста самодвижущейся колёсной машины, передающий вращение от дифференциального механизма на ведущее колесо. Различают П. полностью разгруженные и полуразгруженные. Полностью разгруженная П. свободно проходит через отверстие корпуса дифференциала, смонтированного в подшипниках ведущего моста, и соединяется фланцем со ступицей ведущего колеса, подшипники к-рого установлены на балке ведущего моста. При этом все продольные и поперечные силы воспринимаются балкой ведущего моста, а П. испытывает только кручение. Полуразгруженная П. несёт на своём конце ведущее колесо машины. Такая П. испытывает не только кручение, но и изгиб от сил, возникающих на ведущем колесе. Полностью разгруженные П. применяют на грузовых автомобилях, автобусах, тяжёлых колёсных тракторах, полуразгруженные П.- на легковых автомобилях, у к-рых нагрузки на колёса сравнительно невелики.

ПОЛУПАР, полупаровая обработка почвы, система обработки почвы после раноубираемых с.-х. культур, применяемая в областях с продолжит, и тёплой осенью. В СССР распространена в южных степных р-нах Украины, в Молдавии, на Сев. Кавказе, в Закавказье, Ср. Азии под посевы озимой пшеницы; в лесостепной зоне-под посевы яровых растений (яровой пшеницы, ячменя, сахарной свёклы, кукурузы, подсолнечника). Включает глубокую вспашку почвы после уборки предшествующей культуры и 2-3 культивации или лущения. Если почва достаточно увлажнена и хорошо крошится, то её пашут на полную глубину пахотного слоя, одновременно прикатывают (кольчатым катком) и боронуют. В сухую погоду поле лущат с одновременным прикатьшанием, а через 2-3 недели пашут и боронуют. Прорастающие сорняки уничтожают последующими культивациями с боронованиями. На почвах, склонных к заплы-ванию (каштановые, солонцовые чернозёмы), осенью пахотный слой глубоко рыхлят, чтобы избежать чрезмерного уплотнения его весной. По сравнению с зяблевой обработкой почвы (лущение и вспашка) П. повышает урожай озимой пшеницы на 3-4 ц с 1 га, яровой пшеницы и ячменя на 2-3 ц с 1 га.

Лит.: Земледелие южной зоны Европейской части СССР, М., 1966; Системы земледелия и севообороты основных зон Российской федерации, М., 1968. С. И. Савельев.

ПОЛУПИРИТНАЯ ПЛАВКА в металлургии меди, процесс переработки в шахтных печах пиритной руды, содержащей 15-30% S. Недостаток сульфидов в руде компенсируется добавкой к шихте увеличенного по сравнению с пиритной плавкой кол-ва кокса (10-12% от массы шихты). Степень окисления сульфидного железа зависит от избытка кислорода. Кол-во серы, окисляемой в процессе плавки, составляет 60-95% и зависит при заданном кол-ве воздуха от расхода кокса (чем больше кокса, тем ниже степень десулъфурации). Если в пиритной плавке приходится ошлаковывать большое кол-во железа, прибавляя к шихте кварц, то при П. п. ошлаковывают имеющийся в руде кремнезём; с этой целью при недостатке железа в шихту вводят известняк.

ПОЛУПЛОСКОСТЬ (матем.), совокупность точек плоскости, лежащих по одну сторону от нек-рой прямой этой плоскости. Координаты точек П. удовлетворяют неравенству Ах + By + С > 0, где А, В, С - нек-рые постоянные, причём А и В одновременно не равны нулю. Если сама прямая Ах + By + С = 0 (граница П.) причисляется к П., то говорят о замкнутой П.

На комплексной плоскости z = х + iy рассматриваются верхняя П. у = Imz> 0, нижняя П. у = Imz< 0, левая П. х = Rez< 0, правая П. х = Rez > 0 и т. д. Верхняя П. комплексной плоскости z конформно отображается на круг | w|< 1с помощью дробно-линейной функции
[ris]

ПОЛУПРАВИЛЬНЫЕ МНОГОГРАННИКИ, многогранники, все грани к-рых суть правильные многоугольники неск. разных наименований, а многогранные углы при вершинах конгруэнтны. Существует 13 определённых типов П. м. и две бесконечные серии. См. Многогранник.

ПОЛУПРИЦЕП, несамоходное трансп. средство с закрытым кузовом или платформой с откидными бортами, рама к-рого опирается спереди на опорно-сцепное устройство автомобиля-тягача, а сзади - на одну или две оси с колёсами. Опорно-сцепное устройство допускает качание П. в продольном и поперечном направлениях.

ПОЛУПРОВОДНИКИ, широкий класс веществ, характеризующихся значениями электропроводности а, промежуточными между электропроводностью металлов (о~106 - 104 ом-1 см -1) и хороших диэлектриков (о< =10-10-10-12 ом-1см-1, электропроводность указана при комнатной темп-ре). Характерной особенностью П., отличающей их от металлов, является возрастание электропроводности а с ростом темп-ры, причём, как правило, в достаточно широком интервале темп-р возрастание происходит экспоненциально:
[ris]

Здесь k - Больцмана постоянная, ЕА -энергия активации электронов в П., о0 - коэфф. пропорциональности (в действительности зависит от темп-ры, но медленнее, чем экспоненциальный множитель). С повышением темп-ры тепловое движение разрывает связи электронов, и часть их, пропорциональная ехр (- ЕA/kT), становится свободными носителями тока.

Связь электронов может быть разорвана не только тепловым движением, но и различными внешними воздействиями: светом, потоком быстрых частиц, сильным электрич. полем и т. д. Поэтому для П. характерна высокая чувствительность электропроводности к внешним воздействиям, а также к содержанию примесей и дефектов в кристаллах, поскольку во многих случаях энергия ЕА для электронов, локализованных вблизи примесей или дефектов, существенно меньше, чем в идеальном кристалле данного П. Возможность в широких пределах управлять электропроводностью П. изменением темп-ры, введением примесей и т. д. является основой их многочисл. и разнообразных применений.

Полупроводники и диэлектрики. Классификация полупроводников. Различие между П. и диэлектриками является скорее количественным, чем качественным. Формула (1) относится в равной мере и к диэлектрикам, электропроводность к-рых может стать заметной при высокой темп-ре. Точнее было бы говорить о полупроводниковом состоянии неметаллич. веществ. не выделяя П. в особый класс, а к истинным диэлектрикам относить лишь такие, у к-рых в силу больших значений ЕА и малых о0 электропроводность могла бы достигнуть заметных значений только при темп-pax, при к-рых они полностью испаряются.

Однако термин " П." часто понимают в более узком смысле, как совокупность неск. наиболее типичных групп веществ, полупроводниковые свойства к-рых чётко выражены уже при комнатной темп-ре (300 К). Примеры таких групп:

1) Элементы IV группы периодической системы элементов Менделеева германий и кремний, к-рые как П. пока наиболее полно изучены и широко применяются в полупроводниковой электронике. Атомы этих элементов, обладая 4 валентными электронами, образуют кристаллические решётки типа алмаза с ковалентной связью атомов. Сам алмаз также обладает свойствами П., однако величина ЕА для него значительно больше, чем у Ge и Si, и поэтому при Т = 300К его собственная (не связанная с примесями или внешними воздействиями) электропроводность весьма мала.

2) Алмазоподобные П. К ним относятся соединения элементов III группы периодич. системы (Al, Ga, In) с элементами V группы (Р, As, Sb), наз. П. типа АIII Bv (GaAs, InSb, GaP, InP и т. п.). Атомы III группы имеют 3 валентных электрона, а V группы - 5, так что среднее число валентных электронов, приходящееся на 1 атом, в этих соединениях равно 4 (как и у Ge и Si). Каждый атом образует 4 валентные связи с ближайшими соседями, в результате чего получается кристаллическая решётка, подобная решётке алмаза с той лишь разницей, что ближайшие соседи атома АIII - атомы Bv, а соседи атома Bv-атомы АIII. За счёт частичного перераспределения электронов атомы АIII и Bv в такой структуре оказываются разноимённо заряженными. Поэтому связи в кристаллах AIII Bv не полностью ковалентные, а частично ионные (см. Ионная связь). Однако ковалентная связь в них преобладает и определяет структуру, в результате чего эти кристаллы по многим свойствам являются ближайшими аналогами Ge и Si.

Соединения элементов II и VI групп периодич. системы - AIIBVI (ZnTe, ZnSe, CdTe, CdS и т. п.) также имеют в среднем 4 валентных электрона на 1 атом, но ионная связь у них более сильно выражена. У некоторых из них ковалентная связь преобладает над ионной, у других она слабее, но и те и другие обладают свойствами П., хотя и не столь ярко выраженными, как в предыдущих группах.

Представление о " средней четырёхва-лентности" и " алмазоподобных" П. оказалось плодотворным для поиска новых П., напр, типа AIIBIVC2v (ZnSnP2, CdGeAs2 и т. п.). Многие из алмазоподоб-ных П. образуют сплавы, к-рые также являются П., напр. Ge-Si, GaAs-GaP и др.

3) Элементы VI и V групп и их аналоги. Элементы VI группы Те и Se как П. были известны раньше, чем Ge и Si, причём Se широко использовался в выпрямителях электрич. тока и фотоэлементах. Элементы V группы As, Sb и Bi - полуметаллы, по свойствам близкие к П., а их ближайшие аналоги -соединения типа AIVBVI (PbS, PbTe, SnTe, GeTe и т. п.), имеющие в среднем по 5 валентных электронов на атом, образуют одну из наиболее важных групп П., известную в первую очередь применением PbS, PbSe и PbTe в качестве приёмников инфракрасного излучения. Вообще среди соединений элементов VI группы (О, S, Se, Те) с элементами I-V групп очень много П. Большинство из них мало изучены. Примером более изученных и практически используемых могут служить Си2О (купроксные выпрямители) и Bi2Te3 (термоэлементы).

4) Соединения элементов VI группы с переходными или редкоземельными металлами (Ti, V, Mn, Fe, Ni, Sm, Eu и т. п.). В этих П. преобладает ионная связь. Большинство из них обладает той или иной формой магнитного упорядочения (ферромагнетики или аптиферромагнетики). Сочетание полупроводниковых и магнитных свойств и их взаимное влияние интересно как с теоретич. точки зрения, так и для многих практич. применений. Нек-рые из них (V2О3, Fе3O4, NiS, EuO и др.) могут переходить из полупроводникового состояния в металлическое, причём превращение это происходит очень резко при изменении темп-ры.

5) Органические П. Многие органич. соединения также обладают свойствами П. Их электропроводность, как правило, мала (o~10-10 ом - 1 см- 1) и сильно возрастает под действием света. Однако нек-рые органич. П. (кристаллы кполимеры на основе соединений тетрацианхинодиметана TCNO, комплексы на основе фталоцианина, перилена, виолант-рена и др.) имеют при комнатной темп-ре 0, сравнимую с проводимостью хороших неорганич. П.

Электроны и дырки в полупроводниках. Т. к. в твёрдом теле атомы или ионы сближены на расстояние ~ атомного радиуса, то в нём происходят переходы валентных электронов от одного атома к другому. Такой электронный обмен может привести к образованию ковал ентной связи. Это происходит в случае, когда электронные оболочки соседних атомов сильно перекрываются и переходы электронов между атомами происходят достаточно часто. Эта картина полностью применима к такому типичному П., как Ge. Все атомы Ge нейтральны и связаны друг с другом ковалентной связью. Однако электронный обмен между атомами не приводит непосредственно к электропроводности, т. к. в целом распределение электронной плотности жёстко фиксировано: по 2 электрона на связь между каждой парой атомов - ближайших соседей. Чтобы создать проводимость в таком кристалле, необходимо разорвать хотя бы одну из связей (нагрев, поглощение фотона и т. д.), т. е., удалив с неё электрон, перенести его в к.-л. др. ячейку кристалла, где все связи заполнены и этот электрон будет липшим. Такой электрон в дальнейшем свободно может переходить из ячейки в ячейку, т. к. все они для него эквивалентны, и, являясь всюду лишним, он переносит с собой избыточный отрицат. заряд, т. е. становится электроном проводимости. Разорванная же связь становится блуждающей по кристаллу дыркой, поскольку в условиях сильного обмена электрон одной из соседних связей быстро занимает место ушедшего, оставляя разорванной ту связь, откуда он ушёл. Недостаток электрона на одной из связей означает наличие у атома (или пары атомов) единичного положительного заряда, к-рый, таким образом, переносится вместе с дыркой.

В случае ионной связи перекрытие электронных оболочек меньше, электронные переходы менее часты. При разрыве связи также образуются электрон проводимости и дырка - лишний электрон в одной из ячеек кристалла и некомпенсированный положит/ заряд в др. ячейке. Оба они могут перемещаться по кристаллу, переходя из одной ячейки В другую.

Наличие двух разноимённо заряженных типов носителей тока - электронов и дырок является общим свойством П. и диэлектриков. В идеальных кристаллах эти носители появляются всегда парами -возбуждение одного из связанных электронов и превращение его в электрон проводимости неизбежно вызывает появление дырки, так что концентрации обоих типов носителей равны. Это не означает, что вклад их в электропроводность одинаков, т. к. скорость перехода из ячейки в ячейку (подвижность) у электронов и дырок может быть различной (см. ниже). В реальных кристаллах, содержащих примеси и дефекты структуры, равенство концентраций электронов и дырок может нарушаться, так что электропроводность осуществляется практически только одним типом носителей (см. ниже).

Зонная структура полупроводников. Полное и строгое описание природы носителей тока в П. и законов их движения даётся в рамках квантовой теории твёрдого тела, осн. результаты к-рой могут быть сформулированы следующим образом:

а) В кристаллах энергетический спектр электронов состоит из интервалов энергий, сплошь заполненных уровнями энергии (разрешённые зоны) и разделённых друг от друга интервалами, в к-рых электронных уровней нет (з а-прещённые зоны) (рис. 1).

Рис. 1. Заполнение энергетических зон при абсолютном нуле температуры: а - в диэлектриках; 6 - в металлах: разрешённые зоны заштрихованы, заполненные зэны или их части заштрихованы дважды.

б) Различные состояния электрона в пределах каждой зоны характеризуются, помимо энергии, квазиимпульсом р, принимающим любые значения в пределах нек-рых ограниченных областей в импульсном пространстве (р-простран-стве), наз. зонами Бриллюэна. Форма и размеры зоны Бриллюэна определяются симметрией кристалла и его межатомными расстояниями d. Величина Рмакс ~< h/d, где h-Планка постоянная. Уравнение движения электрона проводимости в кристалле похоже на уравнение движения электрона в вакууме с той, однако, существенной разницей, что соотношения Е = р2/2m0 и vp = р/m0 (m0- масса свободного электрона, Е - его энергия, р - импульс, v - скорость) заменяются более сложной и индивидуальной для каждого кристалла и каждой его энергетич. зоны зависимостью Е(р): vр = dEp\dp.

в) При абс. нуле темп-ры электроны заполняют наинизшие уровни энергии. В силу Паули принципа в каждом состоянии, характеризующемся определённой энергией, квазиимпульсом и одной из двух возможных ориентации спина, может находиться только один электрон. Поэтому в зависимости от концентрации электронов в кристалле они заполняют неск. наинизших разрешённых зон, оставляя более высоко лежащие зоны пустыми. Кристалл, у к-рого при Т=0К часть нижних зон целиком заполнена, а более высокие зоны пусты, является диэлектриком или П. (рис. 1, а), металл возникает лишь в том случае, если хотя бы одна из разрешённых зон уже при Т - 0К заполнена частично (рис. 1, б).

В П. и диэлектриках верхние из заполненных разрешённых зон наз. валентными, а наиболее низкие из незаполненных - зонами проводимости. При Т > 0К тепловое движение " выбрасывает" часть электронов из валентной зоны в зону проводимости (т. е. разрушает часть химич. связей; см. выше). В валентной зоне при этом появляются дырки (рис. 2).

Рис. 2. Заполнение энергетических зон в полупроводнике: показаны только валентная зона и зона проводимости; чёрные кружочки -электроны в зоне проводимости, белые - дырки в валентной зоне.

Носители тока в П. сосредоточены, как правило, в довольно узких областях энергий: электроны - вблизи нижнего края (дна) зоны проводимости Е с, на энергетич. расстояниях ~kT от неё (kT - энергия теплового движения); дырки - в области такой же ширины вблизи верхнего края (потолка) валентной зоны Еv. Даже при самых высоких темп-рах (~ 1000°) kT~0, 1 эв, а ширина разрешённых зон обычно порядка 1 -10 эв. В этих узких областях ~kT сложные зависимости Е(р), как правило, принимают более простой вид. Напр., для электронов вблизи дна зоны проводимости:
[ris]
Здесь индекс " нумерует оси координат, P0i - квазиимпульсы, соответствующие Е c в зоне проводимости или Еv в валентной зоне. Коэфф. тэ наз. эффективными массами электронов проводимости. Они входят в уравнение движения электрона проводимости подобно та в уравнении движения свободного электрона. Всё сказанное справедливо для дырок валентной зоны, где
[ris]
Эффективные массы электронов m и дырок m д не совпадают с m0 и, как правило, анизотропны. Поэтому в разных условиях один и тот же носитель ведёт себя как частица с разными эффективными массами. Напр., в электрич. поле Е, направленном вдоль оси oz, он ускоряется, как частица с зарядом е и массой тэг, а в магнитном поле Н, направленном вдоль oz, движется по эллипсу в плоскости, перпендикулярной H с циклотронной частотой:
[ris]

С квантовой точки зрения такое цик-лич. движение электронов и дырок в кристалле с частотой w с означает наличие уровней энергии (так называемых уровней Ландау), отстоящих друг от друга на hw с. Значения эффективных масс электронов и дырок в разных П. варьируются от сотых долей то до сотен та.

Ширина запрещённой зоны Д E (миним. энергия, отделяющая заполненную зону от пустой) также колеблется в широких пределах. Так, при Т -> 0К Д Е = 0, 165эв в PbSe, 0, 22 эв в InSb, 0, 33 эв в Те, 0, 745эв в Ge, 1, 17эв в Si, 1, 51 эв в GaAs, 2, 32эв в GaP, 2, 58 эв в CdS, 5, 6 эв в алмазе, а серое олово является примером П., у к-рого Д Е = 0, т. е. верхний край валентной зоны точно совпадает с нижним краем зоны проводимости (полуметалл). Более сложные соединения и сплавы П., близких по структуре, позволяют найти П. с любым Д Е от 0 до 2-3 эв.

Рис. 3. Схема энергетических зон Ge; Д Е -ширина запрещённой зоны, L, Т и Д - три минимума зависимости Е (р) в зоне проводимости вдоль осей [100] (А и Г) и [111] (L).

Зонная структура наиболее полно изучена для алмазоподобных П., в первую очередь Ge, Si и соединений AIIIBV; многое известно для Те, соединений A1VBVI и др. Весьма типичной является зонная структура Ge (рис. 3), у к-рого вблизи своего верхнего края соприкасаются две валентные зоны. Это означает существование двух типов дырок - тяжёлых и лёгких с эффективными массами 0, З m0 и 0, 04 т0. На 0, 3 эв ниже расположена ещё одна валентная зона, в к-рую, однако, как правило, дырки уже не попадают. Для зоны проводимости Ge характерно наличие трёх типов минимумов функции Е(р): L, Г и Д. Наинизший из них -L-минимум, расположенный на границе зоны Бриллюэна в направлении кристал-лографич. оси [111]. Расстояние его от верхнего края валентной зоны и есть ширина запрещённой зоны Д Е = 0, 74 эв (при темп-pax, близких к абс. нулю; с ростом темп-ры Д Е несколько уменьшается). Эффективные массы вблизи L-мини-мума сильно анизотропны: 1, 6 то для движения вдоль направления [111] и 0, 08 т0 для перпендикулярных направлений. Четырём эквивалентным направлениям [111] (диагонали куба)в кристалле Ge соответствуют 4 эквивалентных L-ми-нимума. Минимумы Г и Д расположены соответственно при р = 0 и в направлении оси [100], по энергии выше L -минимума на 0, 15 эв и 0, 2 эв. Поэтому количество электронов проводимости в них, как правило, гораздо меньше, чем в L-минимуме.

Зонные структуры др. алмазоподобных П. подобны структуре Ge с нек-рыми отличиями. Так, в Si, GaP и алмазе наинизшим является Д-минимум, а в InSb, InAs, GaAs - Г-минимум, причём для последнего характерны изотропные и весьма малые эффективные массы (0, 013 т 0 в InSb и 0, 07 т 0 в GaAs). Структуры валентных зон у многих алмазоподобных П. подобны, но могут существенно отличаться от П. др. групп.

Некристаллические полупроводники. В жидких, аморфных и стеклообразных П. отсутствует идеальная кристаллич. упорядоченность атомов, но ближайшее окружение каждого атома приблизительно сохраняется (см. Дальний порядок и ближний порядок). Однако ближний порядок не всегда бывает таким же, как и в кристаллич. фазе того же вещества. Так, в ковалентных П. (Ge, Si, AlIBv) после плавления у каждого атома становится не по 4 ближайших соседа, а по 8, по той причине, что ковалентные связи, весьма чувствительные как к расстоянию между атомами, так и к взаимной ориентации связей, разрушаются интенсивным тепловым движением атомов в жидкости. В результате такой перестройки ближнего порядка все эти вещества в расплавах становятся металлами (см. Жидкие металлы).

Однако в др. П. (Те, Se, AIVBVI и др.) ближний порядок при плавлении, по-видимому, не изменяется и они остаются П. в расплавах (см. Жидкие полупроводники). В применении к ним, а также к аморфным П. представления зонной теории требуют существенных изменений и дополнений. Отсутствие строгой упорядоченности в расположении атомов создаёт локальные флуктуации плотности и межатомных расстояний, к-рые делают не вполне одинаковыми энергии электрона вблизи разных атомов одного и того же сорта. Это затрудняет переход электрона от атома к атому, т. к. такие переходы связаны теперь с изменением энергии. Это обстоятельство не приводит к к.-л. качественным изменениям для носителей, энергии к-рых лежат в разрешённых зонах довольно далеко от их краёв, поскольку они имеют достаточно большие энергии для того, чтобы сравнительно легко преодолевать энергетич. барьеры между разными атомами одного сорта. Однако картина качественно изменяется для носителей с энергиями вблизи краёв зон. У них уже не хватает энергии для преодоления разностей энергии между соседними атомами и поэтому они могут стать локализованными, т. е. потерять способность перемещаться. В результате возникают электронные уровни в диапазоне энергий, к-рый в кристалле соответствовал бы запрещённой зоне. Находящиеся на этих уровнях электроны локализованы вблизи соответствующих флуктуации, и к ним уже неприменимы такие понятия зонной теории, как квазиимпульс и др. Меняется и само понятие запрещённой зоны: теперь уже эта область энергий также заполнена электронными состояниями, однако природа этих состояний иная, чем в разрешённых зонах, -они локализованы (псевдозапрещённая зона).

Оптические свойства полупроводников. Со структурой энергетич. зон П. связан механизм поглощения ими света. Самым характерным для П. процессом поглощения является собственное поглощение, когда один из электронов валентной зоны с квазиимпульсом р, поглощая квант света, переходит в незаполненное состояние к.-л. из зон проводимости с квазиимпульсом р'. При этом энергия фотона h w (w = 2пс/ Х) (w - частота света, X - его длина волны) связана с энергиями электрона в начальном Ен и конечном Е к состояниях соотношением:
[ris]
а для квазиимпульсов имеет место закон сохранения, аналогичный закону сохранения импульса:
где q - волновой вектор фотона. Импульс фотона q практически пренебрежимо мал по сравнению с квазиимпульсами электронов. Поэтому справедливо приближённое равенство ~р'~=р.

Собственное поглощение света невозможно при энергии фотона h w, меньшей ширины запрещённой зоны Д Е (минимальная энергия поглощаемых квантов hw = Д Е наз. порогом или краем поглощения). Это означает, что для длин волн
[ris]

чистый П. прозрачен. Строго говоря, минимальная энергия квантов, поглощаемых данным П., может быть > Д Е, если края зоны проводимости Е с и валентной зоны Е v соответствуют различным р. Переход между ними не удовлетворяет требованию р = р', в результате чего поглощение начинается с больших h w, т. е. с более коротких длин волн (для Ge переходы в Г-минимум зоны проводимости, см. рис. 3).






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.