Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Основные черты теории относительности






Явления, описываемые О. т. и называемые релятивистскими (от лат. relatio - отношение), проявляются при скоростях движения тел, близких к скорости света в вакууме с=(2, 997924562±0, 000000011)X1010 см/сек. При таких скоростях (называемых релятивистскими) зависимость энергии Е тела от его скорости v описывается уже не формулой классич. механики Екин = mv 2/2, а релятивистской формулой
[ris]

Масса т, входящая в эту формулу, в О. т. наз. также массой покоя. Из (1) видно, что энергия тела стремится к бесконечности при скорости v, стремящейся к с, поэтому если масса покоя не равна нулю, то скорость тела всегда меньше с, хотя при Е " тс2 она может стать сколь угодно близкой к с. Это непосредственно наблюдается на ускорителях протонов и электронов, в которых частицам сообщаются энергии, много большие тс2, и поэтому они движутся со скоростью, практически равной с. Со скоростью света всегда движутся частицы, масса покоя к-рых равна нулю (фотоны - кванты света, нейтрино). Скорость с является предельной скоростью передачи любых взаимодействий и сигналов из одной точки пространства в другую.

Существование предельной скорости вызывает необходимость глубокого изменения обычных пространственно-временных представлений, основанных на повседневном опыте. Рассмотрим след, мысленный опыт. Пусть в вагоне, движущемся со скоростью vотносительно полотна жел. дороги, посылается световой сигнал в направлении движения. Скорость сигнала для наблюдателя в вагоне равна с. Если бы длины и времена, измеряемые любым наблюдателем, были одинаковы, то выполнялся бы закон сложения скоростей классич. механики и для наблюдателя, стоящего у полотна, скорость сигнала была бы равна с + v, т. е. была бы больше предельной. Противоречие устраняется тем, что в действительности с точки зрения наблюдателя, относительно к-рого физич. система движется со скоростью v, все процессы в этой системе замедляются в корень из 1-v22 раз (это явление наз. замедлением времени), продольные (вдоль движения) размеры тел во столько же раз сокращаются и события, одновременные для одного наблюдателя, оказываются неодновременными для другого, движущегося относительно него (т. н. относительность одновременности). Учёт этих эффектов приводит к закону сложения скоростей, при к-ром предельная скорость оказывается одинаковой для всех наблюдателей.

Характерное для О. т. явление замедления времени может принимать огромные масштабы. В опытах на ускорителях и в космических лучах образуются распадающиеся (нестабильные) частицы, движущиеся со скоростью, близкой к скорости света. В результате замедления времени (с точки зрения земного наблюдателя) времена их распада и, следовательно, проходимые ими (от рождения до распада) расстояния увеличиваются в тысячи и десятки тысяч раз по сравнению с теми, к-рые частицы пролетали бы, если бы эффект замедления времени отсутствовал.

Из релятивистской формулы для энергии следует, что при малых скоростях (м< < с) энергия тела равна
[ris]

Второй член справа есть обычная кинетич. энергия, первый же член показывает, что покоящееся тело обладает запасом энергии Е0 = тс2, наз. энергией покоя (т.н. принцип эквивалентности энергии и массы, или принцип эквивалентности Эйнштейна).

В ядерных реакциях и процессах превращений элементарных частиц значит, часть энергии покоя может переходить в кинетич. энергию частиц. Так, источником энергии, излучаемой Солнцем, является превращение четырёх протонов в ядро гелия; масса ядра гелия меньше массы четырёх протонов на 4, 8•10-26г, поэтому при каждом таком превращении выделяется 4, 3•10-5 эрг кинетич. энергии, уносимой излучением. За счёт излучения Солнце теряет в 1 сек 4•107 т своей массы.

О. т. подтверждена обширной совокупностью фактов и лежит в основе всех совр. теорий, рассматривающих явления при релятивистских скоростях. Уже последоват. теория электромагнитных, в частности оптических, явлений, описываемых классич. электродинамикой (см. Максвелла уравнения), возможна только на основе О. т. Теория относительности лежит также в основе квантовой электродинамики, теорий сильного и слабого взаимодействий элементарных частиц. Законы движения тел при релятивистских скоростях рассматриваются в релятивистской механике, к-рая при скоростях v " с переходит в классическую механику Ньютона. Квантовые законы движения релятивистских микрочастиц рассматриваются в релятивистской квантовой механике и квантовой теории поля.

Принцип относительности и другие принципы инвариантности

В основе О. т. лежит принцип относительности, согласно к-рому в физич. системе, приведённой в состояние свободного равномерного и прямолинейного движения относительно системы, условно наз. " покоящейся", для наблюдателя, движущегося вместе с системой, все процессы происходят по тем же законам, что и в " покоящейся" системе. Говорят, что движущаяся система получается из " покоящейся" преобразованием движения и что принцип относительности выражает инвариантность (независимость) законов природы относительно преобразований движения.

Справедливость принципа относительности означает, что различие между состояниями покоя и равномерного прямолинейного движения не имеет физич. содержания. Если физич. система В движется равномерно и прямолинейно (со скоростью V) относительно системы А, то с тем же правом можно считать, что А движется относительно В (со скоростью-V). Термин " принцип относительности" связан с тем, что если преобразованию движения подвергнуть систему движущихся тел, то все относительные движения этих тел останутся неизменными.

Наряду с принципом относительности из опыта известны и др. принципы инвариантности, или, как ещё говорят, симметрии, законов природы. Любой физич. процесс происходит точно так же если осуществить его в любой др. точке пространства; эта симметрия выражает равноправие всех точек пространства, однородность пространства;

если систему, в к-рой происходит процесс, повернуть на произвольный угол; эта симметрия выражает равноправие всех направлений в пространстве, изотропию пространства;

если повторить процесс через нек-рый промежуток времени; эта симметрия выражает однородность времени.

Т. о., имеет место инвариантность законов природы по отношению к четырём типам преобразований: 1) переносу в пространстве, 2) вращению в пространстве, 3) сдвигу во времени, 4) преобразованию движения. Симметрии 1-4 выполняются точно только в изолированной от внешних воздействий системе, т. е. если можно пренебречь воздействием на систему внешних факторов; для реальных систем они справедливы лишь приближённо.

Изучение свойств преобразований 1-2 составляет предмет евклидовой геометрии трёхмерного пространства, если рассматривать её как физич. теорию, описывающую пространств, свойства физич. объектов (при этом под переносом следует понимать преобразование параллельного переноса).

При скоростях тел v, сравнимых со скоростью с, обнаруживается тесная связь и матем. аналогия между преобразованиями 1, 3 и 2, 4. Это даёт основание говорить об О. т., в к-рой все преобразования 1-4 следует рассматривать совместно, как о геометрии пространства-времени. Содержанием О. т. является рассмотрение свойств преобразований 1-4 и следствий из соответствующих принципов инвариантности. Математически О. т. является обобщением геометрии Евклида - геометрией четырёхмерного Минковского пространства.

Принцип относительности был известен (и справедлив) в классич. механике, но свойства преобразований движения при v< < c и при v~c различны; при v< < c релятивистские эффекты исчезают и преобразования движения переходят в преобразования инвариантности, справедливые для классич. механики (преобразования Галилея; см. Галилея принцип относительности). Поэтому различают релятивистский принцип относительности, обычно наз. принципом относительности Эйнштейна, и нерелятивистский принцип относительности Галилея.

Осн. понятие О. т. - точечное событие, т. е. нечто, происходящее в данной точке пространства в данный момент времени (напр., световая вспышка, распад элементарной частицы). Это понятие является абстракцией - реальные события всегда имеют нек-рую протяжённость в пространстве и во времени и могут рассматриваться как точечные только приближённо. Любой физический процесс есть последовательность событий (С)-C1, С2,..., Сn,.... Справедливость симметрии 1-4 означает, что наряду с последовательностью (С) законы природы допускают существование бесконечного числа др. последовательностей (С*), к-рые получаются из (С) соответствующим преобразованием и различаются положением событий в пространстве и времени, но имеют одинаковую с (С) внутр. структуру. Напр., в случае симметрии 4 процесс (С) можно наглядно описать как происходящий в стоящем на земле самолёте, а процесс (С*)- как такой же процесс, происходящий в самолёте, летящем с постоянной скоростью (относительно земли); различным скоростям и направлениям движения соответствуют различные последовательности (С*). Преобразования, переводящие одну последовательность событий в другую, наз. активными (в отличие от пассивных преобразований, к-рые связывают координаты одного и того же события в двух системах отсчёта; см. ниже). Совокупность этих преобразований должна удовлетворять определённым свойствам. Прежде всего последоват. применение любых двух преобразований должно представлять собой одно из возможных преобразований [напр., переход от системы (1) к системе (2), а затем от системы (2) к системе (3) эквивалентен переходу (1)-(3)]. Кроме того, для каждого преобразования должно существовать обратное преобразование, так что последоват. применение обоих преобразований даёт тождественное (единичное) преобразование, являющееся одним из возможных преобразований системы. Это означает, что совокупность рассматриваемых преобразований (1-4) должна составлять группу в математич. смысле. Эта группа наз. группой Пуанкаре (назв. предложеноЮ. Вигнером). Преобразования группы Пуанкаре носят универсальный характер: они действуют одинаково на события любого типа. Это позволяет считать, что они описывают свойства пространства-времени, а не свойства конкретных процессов. Свойства преобразований Пуанкаре могут быть описаны различными способами (так же, как можно описывать различными способами свойства движений в трёхмерном пространстве); наиболее простое описание получается при использовании инерциалъных систем отсчёта и связанных с ними часов. Роль инерц. систем отсчёта (и. с. о.) в О. т. такая же, как роль прямоугольных декартовых координат в геометрии Евклида.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.