Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Равновесия и обменные реакции в растворах электролитов
Теория слабых электролитов. Константа диссоциации. В растворах слабых электролитов процесс диссоциации протекает обратимо, т.е. идет до установления состояния равновесия, следовательно, к нему может быть применен закон действующих масс для обратимых процессов. Обратимый процесс диссоциации слабого электролита характеризуется константой равновесия. Так, для процесса диссоциации слабого электролита КmАn D mКn+ + nАm– можно записать константу равновесия:
где [Кn+], [Аm–], [КmАn] – равновесные концентрации компонентов; m и n – стехиометрические коэффициенты компонентов в уравнении диссоциации; Кд – константа равновесия для процесса диссоциации слабого электролита, называемая константой диссоциации.. Например, для процесса диссоциации уксусной кислоты СН3СООН D СН3СОО- + Н+ . Кд представляет собой важную характеристику слабых электролитов, т.к. указывает на прочность их молекул в данном растворе. Чем меньше Кд в данном растворителе, тем слабее диссоциирует электролит и тем, следовательно, устойчивее его молекулы. Кд – табличная величина. Как и любая константа равновесия, константа диссоциации зависит от природы растворенного вещества и растворителя, от температуры и не зависит от концентрации раствора. С повышением температуры константа диссоциации обычно уменьшается. Например, константа диссоциации уксусной кислоты при 293, 298 и 373 К соответственно равна 1, 85·10-5, 1, 75·10-5, 1, 35·10-5 (т.е. процесс диссоциации является экзотермическим). Следует отметить, что строго законы химического равновесия применимы только к слабым электролитам, поэтому описание электролитической диссоциации законом действующих масс является одним из основных признаков слабых электролитов. Между Кд и α существует количественная зависимость. Примем для процесса диссоциации бинарного электролита КА D К+ + А– молярную концентрацию растворенного вещества КА равной С, а степень диссоциации α, тогда равновесные концентрации ионов в растворе будут равны [А-] = [К+] = α С, а равновесная концентрация недиссоциированных молекул [КА] = С – α С, то , где (1-α) – доля недиссоциированных молекул вещества. Полученное соотношение называется законом разбавления Оствальда. В случае слабых электролитов если α < < 1, то и ; здесь – разбавление раствора. Значения Кд для разных электролитов приведены в справочной литературе. Для расчетов, связанных с диссоциацией кислот, часто удобно пользоваться не константой Кд, а так называемым показателем константы диссоциации рК, который определяется соотношением рК = – lg Кд. Очевидно, что с возрастанием Кд, т.е. с увеличением силы кислоты, значение рК уменьшается; следовательно, чем больше рК, тем слабее кислота. Степень диссоциации электролита α связана с изотоническим коэффициентом i соотношением: или ; здесь k – число ионов, на которые распадается при диссоциации молекула электролита (для КСl = 2, для ВаСl2 и Nа2SО4 k=3 и т.д.). Таким образом, найдя по опытным величинам ∆ р, ∆ tзам и т.п. значение i, можно вычислить степень диссоциации электролита в данном растворе. При этом следует иметь в виду, что в случае сильных электролитов найденное таким способом значение α выражает лишь «кажущуюся» степень диссоциации, поскольку в растворах сильные электролиты диссоциированы полностью. Наблюдаемое отличие кажущейся степени диссоциации от единицы связано с межионными взаимодействиями в растворах сильных электролитов. Теория сильных электролитов. В водных растворах сильные электролиты полностью диссоциируют, поэтому число ионов в них больше, чем в растворах слабых электролитов той же концентрации. И если в растворах слабых электролитов концентрация ионов мала, расстояние между ними велико и взаимодействие между ионами незначительно, то в не очень разбавленных растворах сильных электролитов среднее расстояние между ионами вследствие значительной концентрации сравнительно мало. Между ними возникает электростатическое взаимодействие, которое приводит к тому, что катионы и анионы испытывают взаимное притяжение, а ионы одного знака заряда отталкиваются друг от друга. Благодаря притяжению каждый ион как бы окружен шарообразным роем противоположно заряженных ионов, получившим название «ионной атмосферы», в то время как ионы одноименного знака располагаются дальше (рис. 8.7). При этом ионы сольватируются (гидратируются), что также отражается на их свойствах и свойствах растворителя. Впервые понятие «ионная атмосфера» предложено Дебаем и Хюккелем. Ионные атмосферы обладают следующими характерными особенностями: - в их состав входят катионы и анионы, однако преобладают ионы, противоположные по знаку заряду центрального иона; - cуммарный заряд ионной атмосферы равен по величине заряду центрального иона и противоположен ему по знаку; - все ионы в растворе равноправны, поэтому каждый из них является центральным ионом и одновременно входит в состав ионной атмосферы другого иона; - за счет теплового движения ионы, входящие в состав ионной атмосферы, постоянно меняются местами с ионами, находящимися за ее пределами, т.е. ионная атмосфера носит динамический характер. Межионные силы влияют на все свойства растворов (электрическая проводимость, tкип и tзам, давление насыщенного пара, осмотическое давление). Так, в отсутствие внешнего электрического поля ионная атмосфера симметрична и силы, действующие на центральный ион, взаимно уравновешиваются. Если же приложить к раствору постоянное электрическое поле, то разноименно заряженные ионы будут перемещаться в противоположных направлениях. При этом каждый ион стремится двигаться в одну сторону, а окружающая его ионная атмосфера – в противоположную, вследствие чего направленное перемещение иона замедляется, а следовательно, уменьшается число ионов, проходящих через раствор в единицу времени, т.е. уменьшается сила тока. Чем больше концентрация раствора, тем сильнее проявляется тормозящее действие ионной атмосферы на электрическую проводимость раствора. Следовательно, в результате межионных взаимодействий все свойства раствора электролита, зависящие от концентрации ионов, проявляются так, как если бы число ионов в растворе было меньше, чем это соответствует полной диссоциации электролита. Для оценки состояния ионов в растворе пользуются величиной, называемой активностью. Под активностью иона понимают ту эффективную, условную концентрацию его, соответственно которой он действует при химических реакциях. Активность иона a равна его истинной концентрации С, умноженной на коэффициент активности иона f: . Коэффициент активности иона f - безразмерная величина, характеризующая степень отклонения свойств данного раствора от свойств идеального раствора: . Коэффициенты активности зависят от природы растворителя и растворенного вещества, от заряда и природы иона, от концентрации раствора, от температуры. В разбавленных растворах (С ≤ 0, 5 моль/л) природа иона слабо сказывается на значении его коэффициента активности f. Приближенно можно считать, что в разбавленных растворах коэффициент активности иона f в данном растворителе практически не зависит от природы иона, зависит только от заряда иона и ионной силы раствора I, которая равна полусумме произведений концентрации С каждого иона на квадрат его заряда z: . В химических справочниках значения f ионов в разбавленных растворах приводятся в зависимости от их зарядов z и ионной силы раствора I. Приближенно коэффициент активности иона в разбавленном растворе можно вычислить по формуле . Активность и коэффициент активности можно определить на основании экспериментальных данных (по повышению tкип, понижению tзам, по давлению насыщенного пара над растворами и т.д.). Подстановка величины активности (а) вместо концентрации (С) в уравнение закона действующих масс делает его справедливым при любых концентрациях. Так, для обратимого процесса КА D К+ + А–, отражающего диссоциацию слабого электролита в растворе, константа равновесия будет равна (термодинамическая константа диссоциации). Для предельно разбавленных растворов (близких к идеальным), где отсутствуют силы взаимодействия ионов между собой из-за их отдаленности друг от друга, f= 1, т.е. a = С. При обсуждении последующего материала примем, что концентрации разбавленных растворов электролитов существенно не отличаются от их активностей. Электролитическая диссоциация кислот, оснований и солей в воде. Молекулы кислот в воде диссоциируют на ионы водорода (гидроксония-гидратированный ион водорода) и на анионы кислотного остатка. Например, уравнение диссоциации азотной кислоты имеет вид HNO3+H2O = H3O+ + NO3ˉ или при упрощенной записи НNО3 = Н+ + NО3ˉ. Максимальное число ионов водорода, образующихся из одной молекулы кислоты, определяет ее основность, следовательно НNО3 - одноосновная кислота. У сильных кислот, диссоциирующих нацело, свойства кислот проявляются в большей степени, у слабых – в меньшей. Чем лучше кислота диссоциирует, т.е. чем больше ее константа диссоциации, тем она сильнее. Например, азотная кислота более сильная, чем йодноватая, т.к. Кд (HNO3) = 4, 36*10 > Кд(HIO3) = 1, 7*10-1. Многоосновные кислоты диссоциируют ступенчато, последовательно отщепляя один ион водорода за другим, и каждая ступень ионизации характеризуется определенной константой диссоциации. Если кислота слабая, то на всех ступенях процесс обратимый. Так, для ортофосфорной кислоты: 1. Н3РО4 D Н+ + Н2РО4ˉ . 2. Н2РО4ˉ D Н+ + НРО42- . 3. НРО42- D Н+ + РО43- . Из сопоставления приведенных выше значений констант диссоциации следует, что Кд1 > Кд2 > Кд3. Первый ион водорода отрывается от молекулы легче, последующие все труднее, т.к. возрастает отрицательный заряд кислотного остатка; поэтому в не очень разбавленных растворах фосфорной кислоты ионов РО43- мало. Неравенства Кд1 > Кд2 > …Кдn характерны и для других многоосновных кислот. Ориентировочно можно считать, что каждая последующая константа диссоциации меньше предыдущей в 105 раз. Они связаны между собой соотношением: КД= КД1* КД2*…*КДn. Многоосновные сильные кислоты диссоциируют по первой ступени как сильные электролиты, а по второй – как электролиты средней силы, например: Н2SО4 = Н+ + НSО4ˉ КД1=1*103, НSО4- D Н+ + SО42- КД2=2*10-2. Способность многоосновных кислот диссоциировать ступенчато объясняет их склонность к образованию кислых солей. Сила кислородсодержащих кислот зависит от строения молекулы. Формулу кислородсодержащих кислот в общем виде можно записать ЭОm(OH)n, имея в виду, что в их молекулах имеются связи Н-О-Э и Э=О. Как показывают исследования, сила кислот практически не зависит от n (числа ОН-групп), но заметно возрастает с увеличением m (числа несвязанных в ОН-группы атомов кислорода, т.е. со связями Э=О). По первой ступени ионизации кислоты типа Э(ОН)n относятся к очень слабым (Кд1 = 10-8 – 10-11, рКд1=7-11), типа ЭО(ОН)n – к слабым (Кд1=10-2-10-4, рКд1=1, 5-4), типа ЭО2(ОН)n – к сильным и типа ЭО3(ОН)n – к очень сильным (табл.8.2).
Таблица 8.2 Классификация кислородсодержащих кислот по их силе в водных растворах*
Примечание: *В таблице приведены значения КД первой ступени ионизации кислот. Резкое возрастание силы в ряду кислот с увеличением m можно объяснить оттягиванием электронной плотности от связи Н-О на связь Э=О. С увеличением степени окисления центрального атома Э изменение состава образуемых им кислородсодержащих кислот отвечает увеличению m, например:
В этом проявляется общая закономерность: с увеличением степени окисления элемента в ряду его гидроксидов основные свойства ослабевают, кислотные – усиливаются, например:
Молекулы оснований в воде диссоциируют на катионы металлов (исключение - NН4ОН D NН4+ + ОН ˉ) и гидроксид- ионы. Например, уравнение диссоциации гидроксида натрия имеет вид NаОН = Nа+ + ОНˉ. Максимальное число гидроксид-ионов, образующихся из одной молекулы основания, определяет его кислотность, следовательно, NaOH – однокислотное основание. Чем больше константа диссоциации основания, тем оно сильнее. Например, гидроксид лития более сильное основание, чем гидроксид аммония, т.к. Кд(LiOH) = 6, 75*10-1 > Кд (NH4OH) = 1, 8*10-5. Многокислотные основания диссоциируют ступенчато, последовательно отщепляя один гидроксид – ион за другим, и каждая ступень ионизации характеризуется определенной константой диссоциации. Если основание слабое, то на всех ступенях процесс протекает обратимо, например: Fе(ОН)3 D Fе(ОН)2+ + ОНˉ, Fе(ОН)2+ D Fе(ОН)2+ + ОНˉ, Fе(ОН)2+ D Fе3+ + ОНˉ. Многокислотные сильные основания диссоциируют по первой ступени как сильные электролиты, а по второй – как электролиты средней силы, например: Са(ОН)2 = СаОН+ + ОНˉ, СаОН+ D Са2+ + ОНˉ. Этим объясняется способность оснований многовалентных металлов образовывать основные соли, например Zn(ОН)Сl, Fе(ОН)Сl2 и др. Гидроксиды многих металлов в водных растворах могут диссоциировать и по кислотному, и по основному типу. Соединения, которые в зависимости от условий проявляют как кислотные, так и основные свойства, называются амфотерными или амфолитами. Амфотерность электролитов объясняется малым различием прочности связей Э-О и О-Н. К амфотерным электролитам относятся: Zn(ОН)2, Al(ОН)3, Be(ОН)2, Ga(ОН)3, Cr(ОН)3, Ge(ОН)2, Sn(ОН)4, Pb(ОН)2 и др. Примером может служить диссоциация гидроксида цинка: 2H+ +[Zn(OH)4]2ˉ D Zn(OH)2 +2H2O D [Zn(H2O)2]2+ +2OHˉ. При этом в кислой среде равновесие сдвигается вправо, в щелочной – влево. При взаимодействии гидроксида цинка, например, с азотной кислотой образуется нитрат цинка: Zn(OH)2 + 2HNO3 D Zn(NO3)2 + 2H2O; при взаимодействии же с гидроксидом калия – тетрагидроксоцинкат калия: Zn(OH)2 + 2KOH D K2[Zn(OH)4]. Соли при электролитической диссоциации образуют катионы металлов (исключение соли аммония) или комплексные катионы и одноатомные или многоатомные анионы. Соли бывают средние (нейтральные, например, СаSО4), кислые (СаНРО4), основные (Zn(ОН)Сl), комплексные (K2[Zn(OH)4]). Средние соли диссоциируют в одну стадию. Например, Nа2SО4 = 2Nа+ + SО . В кислых солях отщепляется сначала ион металла по типу сильного электролита, затем – ионы водорода по типу слабого электролита. Например: NаН2РО4 = Nа+ + Н2РО , Н2РО D Н+ + НРО , НРО D Н+ + РО . В последних двух ступенях равновесие сдвинуто влево, поэтому ионов Н+ в растворе очень мало. В основных солях сначала отщепляется кислотный остаток по типу сильного электролита, затем - гидроксид–ионы по типу слабого электролита. Например, (ZnОН)2SО4 = 2ZnОН+ + SО , ZnОН+ D Zn2+ + ОНˉ. В последней стадии равновесие сдвинуто влево, поэтому ионов ОНˉ в растворе мало. Обменные реакции в растворах электролитов. В растворах электролитов реагирующими частицами являются ионы (точнее сольватированные или гидратированные ионы). Реакции, осуществляющиеся в результате обмена ионами между электролитами, называются ионообменными (или реакциями ионного обмена). Отличительной чертой реакций ионного обмена (РИО) является сохранение элементами их степеней окисления (реакции протекают без изменения заряда простых и сложных ионов). Различают обратимые и необратимые РИО. Все реакции между ионами обратимы, протекают очень быстро. Однако в некоторых случаях равновесие сильно смещено в сторону образования продуктов реакции из-за удаления их из сферы реакции (т.е. реакции практически идут до конца, необратимы). РИО протекают практически необратимо, если исходные компоненты – сильные электролиты и растворимые вещества, а в ходе реакции образуются: - осадки (нерастворимые или малорастворимые); - газообразные вещества; - слабые электролиты (малодиссоциирующие вещества); - комплексные соединения. В уравнениях необратимых РИО принято ставить знак «=». Закономерности, характерные для обратимых ионнообменных реакций: 1. Реакция ионного обмена обратима (может протекать в двух направлениях), если среди исходных и образующихся веществ есть слабые электролиты, нерастворимые, малорастворимые или газообразные вещества или если и исходные, и образующиеся вещества являются растворимыми и сильными электролитами. В уравнениях таких реакций ставят знак обратимости «D». 2. Равновесие такой реакции смещается в направлении наиболее полного связывания ионов (их наименьшей концентрации в растворе). Реакции обмена, написанные в молекулярной форме, не отражают особенностей взаимодействия между ионами в растворе. Сущность взаимодействия в растворах электролитов отражают ионно-молекулярные уравнения – полные и краткие. При составлении ионно-молекулярных уравнений: 1) сильные электролиты и одновременно растворимые вещества записывают в виде ионов; 2) слабые электролиты (малодиссоциирующие), нерастворимые, малорастворимые и газообразные вещества записывают в виде молекул с соответствующими значками: ↓ или ↑; 3) краткое ионно-молекулярное уравнение получают из полного путем исключения из него тех ионов, которые присутствуют в неизменном виде и количестве в правой и левой частях. Примеры: 1. Молекулярное уравнение: ВаСl2 + Nа2SО4 = ВаSО4↓ + 2NаСl. Полное ионно-молекулярное уравнение: Ва2+ + 2Сl + 2Nа+ + SО = ВаSО4↓ + 2Nа+ + 2Сl . Сущность ионного процесса выражает краткое ионно-молекулярное уравнение: Ва2+ +SО = ВаSО4↓. Поскольку ВаSО4 выпадает в осадок, который не участвует в обратной реакции, то и равновесие рассматриваемого процесса сильно смещено вправо, т.е. реакция практически идет до конца (∆ G°= -60 кДж). 2. Nа2СО3 + Н2SО4 = Nа2SО4 + , 2Nа+ + СО + 2Н+ + SО = 2Nа+ + SО + Н2О + СО2↑, СО + 2Н+ = Н2СО3 = Н2О + СО2↑. В результате реакции получается газообразное вещество и слабый электролит. 3. 2КСN + Н2SО4 = 2НСN + К2SО4, Н+ +СN = НСN. В результате реакции получается малодиссоциирующее соединение (слабый электролит) – НСN. Обобщая этот пример, можно сделать вывод, что сильные кислоты вытесняют слабые из растворов их солей (аналогично сильные основания вытесняют слабые основания из растворов их солей). К обменным ионным процессам относятся также реакции нейтрализации, в результате которых образуется слабый электролит – вода. Например: НСl + КОН = Н2О + КСl, Н+ + ОН ˉ = Н2О. Реакции нейтрализации любых других сильных кислот и оснований протекают аналогично. Поскольку соль полностью диссоциирует на ионы, реакция в любом случае протекает лишь между ионами Н+ и ОН ˉ. 4. ZnСl2 + 4КОН = К2[Zn(ОН)4] + 2КCl, Zn2+ + 4ОН‾ = [Zn(ОН)4]2‾. В результате реакции образуется комплекс (комплексный ион). 5. НСN + СН3СООNа D СН3СООН + NаСN, НСN + СН3СОО‾ D СН3СООН + СN‾. NН4ОН + НСl D Н2О + NН4Сl, NН4ОН + Н+ D Н2О + NН4+. Слабые электролиты есть и в левой, и в правой частях уравнений реакций. Равновесие обратимого процесса в этих случаях смещается в сторону образования вещества, обладающего меньшей константой диссоциации. В первой реакции равновесие смещено влево (КНСN = 4, 9·10‾ 10, КСН3СООН = 1, 8·10‾ 5), во второй – вправо (КН2О = 1, 8·10‾ 16, КNН4ОН = 1, 8·10‾ 5). Это отвечает значениям ∆ G° = 43 кДж и (-84 кДж), соответственно, для первой и второй реакций. Электролитическая диссоциация воды. Водородный показатель. Изучение тщательно очищенной от посторонних примесей воды показало, что она обладает определенной, хотя и незначительной электрической проводимостью, заметно возрастающей с повышением температуры. Так, при 273К удельная электрическая проводимость воды составляет 1, 5·10-8 Ом-1·см-1, при 289К – 6, 2·10-8 Ом-1·см-1. Наличие электрической проводимости может быть объяснено только тем, что молекулы воды, хотя и в незначительной степени, распадаются на ионы, т.е. вода является слабым электролитом. Процесс диссоциации воды может быть записан с учетом электростатического взаимодействия полярных молекул (самоионизации), в ходе которого образуются ионы гидроксония и гидроксид-ионы: 2Н2О D Н3О+ + ОН‾ или в упрощенной форме: Н2О D Н+ + ОН‾. Выражение для константы электролитической диссоциации воды: (при 25°С). Ничтожно малая диссоциация воды позволяет считать концентрацию недиссоциированных молекул равной общей концентрации, которая для воды объемом 1л. составляет: . Найдем из выражения для Кд произведение двух постоянных при данной температуре величин: Кд·[Н2О] = [Н+][ОН‾ ] = 1, 8·10-16·55, 6=10-14. Произведение [Н+][ОН‾ ] называется ионным произведением воды (обозначается: КВ или Kw): КВ=[Н+][ОН‾ ]. Это величина постоянная при данной температуре. Так при 25°С, ионное произведение воды КВ = [Н+][ОН‾ ] = 10-14. Таким образом, для воды, разбавленных водных растворов кислот, щелочей, солей и др. соединений ионное произведение воды практически постоянная величина и зависит только от температуры:
Растворы, в которых концентрация ионов водорода равна концентрации гидроксид-ионов, называют нейтральными. В чистой воде и нейтральных растворах при 25°С [Н+] = [ОН‾ ] = 10-7 моль/л. Если [Н+] > 10-7 моль/л, то среда кислая; если [Н+] < 10-7 моль/л, то среда щелочная. Для удобства количественной характеристики кислотных или щелочных свойств растворов введена величина, называемая водородным показателем (рН) – это отрицательный десятичный логарифм концентрации ионов Н+: рН = –lg[Н+]. - В нейтральной среде [Н+]=10-7 моль/л, рН= – lg10-7 = 7; - в кислой среде рН <; - в щелочной среде рН > 7. Аналогично введен гидроксильный показатель (рОН) – это отрицательный десятичный логарифм концентрации гидроксид-ионов: рОН= – lg[ОН¯ ]. Прологарифмируем с обратным знаком выражение для КВ при 25°С, используем введенные показатели рН и рОН и получим рН + рОН = 14. Понятие об индикаторах. Индикаторы – вещества, меняющие свою окраску в определенной области значений рН раствора. Индикаторами могут быть слабые органические кислоты HInd и основания IndOH, молекулы и ионы которых имеют разную окраску. Будучи введенными в исследуемый раствор, индикаторы диссоциируют по одному из следующих механизмов: HInd D H+ + Ind¯ (а) IndOH D Ind+ + OH¯ (б). Так как процесс диссоциации слабых электролитов обратим, положение равновесия в схемах (а) и (б) зависит от кислотности исследуемого раствора. В кислых растворах индикаторы, представляющие собой слабые кислоты, в соответствии с принципом Ле-Шателье находятся преимущественно в виде молекул и окраска раствора соответствует молекулярной форме индикатора НInd. Индикаторы, являющиеся слабыми основаниями, в растворах кислот, напротив, будут находиться в своей ионной форме Ind+, которая обусловливает окраску раствора. К числу индикаторов, представляющих собой слабые органические кислоты, принадлежат лакмус, фенолфталеин, феноловый красный, ализариновый желтый. К индикаторам, представляющим слабые основания, относятся, например, метиловый оранжевый, метиловый красный. Выбор того или иного индикатора определяется интервалом рН, в котором необходимо поддерживать кислотность исследуемого раствора. Например, лакмус НInd D H+ + Ind¯ красный синий рН < 6 рН > 8 рН = 6÷ 8 область перехода рН (фиолетовый цвет). Гетерогенное равновесие. Произведение растворимости. Подавляющее большинство веществ обладает ограниченной растворимостью в воде и других растворителях. Поэтому на практике часто приходится встречаться с системами, в которых в состоянии равновесия находятся осадок и насыщенный раствор электролита. Вследствие динамического характера равновесия скорость процесса растворения осадка будет совпадать со скоростью обратного процесса кристаллизации. Например, возьмем насыщенный раствор нерастворимого сильного электролита ВаSО4. В растворе устанавливается гетерогенное равновесие между осадком (твердой фазой) электролита и ионами электролита в растворе: . Его можно охарактеризовать с точки зрения закона действующих масс, записав выражение для константы гетерогенного равновесия К: . Преобразуем это выражение к виду: К[ВаSО4] = [Ва2+][SО42‾ ]; [ВаSО4] = const, как для твердого вещества, то К[ВаSО4] = const при данной температуре. Отсюда следует, что произведение концентраций ионов Ва2+ и SО42‾ также представляет собой постоянную величину. Это произведение называется произведением растворимости ПР: ПР (BaSO4) = [Ва2+][SO42‾ ]. В общем виде для насыщенного раствора малорастворимого или нерастворимого сильного электролита АnBm, находящегося в равновесии с его твердой фазой, будет характерен следующий обратимый процесс: , для которого ПР (AnBm) = [Аm+]n [Вn-]m. Таким образом, гетерогенное равновесие «осадок – насыщенный раствор» подчиняется правилу произведения растворимости: произведение концентраций ионов электролита, содержащихся в его насыщенном растворе, возведенных в степени, соответствующие стехиометрическим коэффициентам, есть величина постоянная при данной температуре и называется произведением растворимости (ПР). Из понятия ПР вытекают три следствия: 1. Условие образования осадка. При увеличении концентрации одного из ионов электролита в его насыщенном растворе (например, путем введения другого электролита, содержащего тот же ион) произведение концентраций ионов становится больше ПР. При этом равновесие смещается в сторону образования осадка. Осадок образуется, если произведение концентраций ионов, возведенных в степень стехиометрических коэффициентов, больше величины произведения растворимости: [Аm+]n·[Вn-]m > ПР(AnBm). В результате образования осадка концентрация другого иона, входящего в состав электролита, тоже изменяется. Устанавливается новое равновесие, при котором произведение концентрации ионов электролита вновь становится равным ПР. 2. Условие растворения осадка. Напротив, если в насыщенном растворе электролита уменьшить концентрацию одного из ионов (например, связав его каким-либо другим ионом), произведение концентраций ионов будет меньше значения ПР, раствор становится ненасыщенным, а равновесие между жидкой фазой и осадком сместится в сторону растворения осадка. Осадок растворяется, если произведение концентраций ионов, возведенных в степень стехиометрических коэффициентов, меньше величины произведения растворимости: [Аm+]n·[Вn-]m < ПР (AnBm). 3. Условие получения одного малорастворимого соединения (II) из другого малорастворимого соединения (I): ПРII < ПРI. Например, химическое равновесие приведенной ниже реакции будет смещено вправо, в сторону образования AgI, т.к. ПР(AgI) = 1, 5·10‾ 16 < ПР(AgCl) = 1, 56·10‾ 10: АgCl↓ + NaI D AgI↓ + NaCl AgCl↓ + I‾ D AgI↓ + Cl‾. Произведение растворимости характеризует растворимость вещества: чем больше ПР, тем больше растворимость. ПР – табличная величина. Исходя из значений ПР, можно выразить растворимость малорастворимых сильных электролитов в воде и растворах, содержащих другие электролиты.
|