Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






ПРИМЕНЕНИЕ ПРОТИВОМОРОЗНЫХ ДОБАВОК




Сущность технологии зимнего бетонирования заключается в том, что растворы солей, введенные в бетонную смесь при ее приготовлении, в процессе выдерживания уложенного в конструкцию бетона, имеющего положительную начальную температуру, значительно продлевают состояние жидкой фазы, обеспечивая тем самым протекание реакции гидратации даже в условиях отрицательных температур. К числу используемых солей относятся нитрит натрия, нитрит кальция, поташ, хло­ристый натрий и др.

Бетонирование конструкций с термообработкой

Термообработка бетона представляет собой искусственное внесение тепловой энергии в монолитную конструкцию в пери­од ее твердения с целью сокращения периода выдерживания бетона и приобретения им критической или проектной прочно­сти до замерзания.

Тепловое воздействие на прогреваемый бетон осуществля­ется несколькими методами, отличающимися способами пере­дачи тепловой энергии. Самыми распространенными из них в практике строительства являются следующие.

1. Контактный способ, обеспечивающий передачу тепловой энергии от искусственно нагретых тел (материалов) прогревае­мому бетону путем непосредственного контакта между ними (рис. 28.1). Разновидностями этого способа являются: обогрев бетона в термоактивной опалубке, а также прогрев с примене­нием различных технических средств (греющие провода, ка­бель, термоактивные гибкие покрытия и пр.), непосредственно контактирующих с обогреваемой средой — бетоном.

2. Конвективный способ, при котором передача тепла от искусственных источников нагреваемым объектам (опалубке или бетону) происходит через воздушную среду путем конвек­ции (рис. 28.2). Технология реализуется в замкнутых контурах с применением технических средств (электрокалориферов, га­зовых конвекторов и пр.), преобразующих различные энерго­носители (электроэнергия, газ, жидкое или сухое топливо, пар и пр.) в тепловую энергию. Метод применим для прогрева тонкостенных стеновых конструкций и перекрытий.

3. Электропрогрев основан на выделении в твердеющем бе­
тоне тепловой энергии, получаемой путем пропускания элект­
рического тока через жидкую фазу бетона, используемую в ка­
честве омического сопротивления. При этом пониженное
напряжение к прогреваемой монолитной конструкции подво­
дят посредством различных электродов (стержневых, полосо­
вых и струнных), погружаемых в бетон или соприкасающихся
с ним.

4. Инфракрасный нагрев основан на передаче лучистой энер­
гии от генератора инфракрасного излучения нагреваемым по­
верхностям через воздушную среду. На облучаемой поверхности поглощенная энергия инфракрасного спектра преобразуется в тепловую и благодаря теплопроводности распро­страняется в глубь нагреваемой конст­рукции. Метод реализуется посредст­вом автономных (от забетонированной конструкции и опалубки) инфракрас­ных прожекторных установок (ИПУ), работающих в основном на электро­энергии.



5. Индукционный прогрев основан на использовании элект­ромагнитной индукции, при которой энергия переменного электромагнитного поля преобразуется в арматуре или в сталь­ной опалубке в тепловую и за счет теплопроводности переда­ется бетону. Реализуется метод посредством инвентарного ин­дуктора, рассчитанного и изготовленного для определенного узла (например, стыка железобетонных колонн) или объема железобетонной конструкции.

6. Греющие провода. Для отдельных видов бетонируемых конструкций, в том числе и при несъемной опалубке из пено-полистирола, рекомендуется применять нагревательные провода с металлической токонесущей изолированной жилой, подклю­чаемые в электрическую сеть и работающие, как нагреватели сопротивления. Для нормального обогрева основным требова­нием является предотвращение механических повреждений изо­ляции проводов при их установке, монтаже опалубки и укладке бетонной смеси, устранение замыканий токонесущей жилы с арматурой и другими металлическими элементами.

Нагревательные провода размещают в конструкции перед бетонированием. В монолитных стенах применяют вертикаль­ную навивку нагревательного провода. Провод закрепляют сна­ружи на вертикальные сетки и каркасы, в наиболее защищен­ной зоне при бетонировании — между арматурой и опалубкой. В перекрытиях провод размещают в нижней части, закрепляя по сетке и арматурному каркасу. Греющий провод применяют в виде последовательно соединенных отрезков длиной 30...45 м. Провода к арматуре крепят вязальной проволокой.



 

Влияние температуры выдерживания бетона на динамику нарастания прочности. Особенности производства бетонных работ в зимнее время, а также в условиях сухого и жар­кого климата (учебник, лекции, данные курсового проектирования).

Формирование прочностных характеристик бетона в зим­них условиях имеет свои особенности. Основной проблемой является замерзание в бетоне в начальный период его структу-рообразования химически несвязанной воды затворения с по­следующим увеличением ее объема до 9% и сопутствующим разрушением связей в бетоне. При этом его конечная проч ность на 15...20% ниже прочности бетона, выдержанного в нормальных условиях.

Замерзание воды в бетоне влияет и на другие процессы, снижающие его прочность. Так, ледяная пленка обволакивает арматуру и заполнитель в бетоне, препятствуя тем самым их необходимому сцеплению с цементным тестом и созданию плотной структуры бетона после оттаивания.

Основой формирования технологии зимнего бетонирования является обеспечение условий, при которых монолитные желе­зобетонные конструкции в короткие сроки с наименьшими затратами могли бы набрать критическую прочность по моро­зостойкости или требуемую для восприятия проектных нагру­зок с необходимым качеством.

Критическая прочность бетона, выраженная в процентах от R28 есть прочность, при достижении которой бетон может быть заморожен без снижения его прочностных показателей при наступлении положительных температур.

Условия сухого и жаркого климата характеризуются относи­тельной влажностью воздуха менее 50% и температурой свыше 25°С. Основная проблема при таких погодных условиях — рез­кое обезвоживание бетона (особенно его поверхностного слоя) в начальный период выдерживания, вызывающее нарушение плотности структуры. Кроме того, под воздействием прямых солнечных лучей велика вероятность появления в бетоне термо­напряженных зон, оказывающих деструктивное влияние на формирование прочностных характеристик конструкции.

Для получения качественного бетона в условиях сухого и жаркого климата необходимо соблюдать следующие требова­ния технологии:

• применять бетоны на быстротвердеющих цементах, марка которых должна превышать его класс не менее чем в 1,5 раза;

• температура бетонной смеси при бетонировании конст­рукций с модулем поверхности М„ < 3 не должна превышать 20°С, а при Мп > 3 - 30...35°С;

уход за свежеуложенным бетоном необходимо начинать сразу после его укладки в конструкцию и продолжать до приоб­ретения им не менее 50% проектной прочности. Уход должен предусматривать устройство над открытой (незаопалубленной) частью бетонной конструкции влагоемкого покрытия с систе­матическим его увлажнением;

• при появлении на поверхности конструкции трещин из-за пластической усадки допускается повторное поверхностное виб­рирование бетона не позднее чем через 0,5... 1 ч по окончания его укладки;

• от воздействия прямых солнечных лучей свежеуложенный бетон следует защищать пленочными теплоизоляционными ма­териалами с коэффициентом отражения лучей более 50%;

• для ускорения твердения бетона целесообразно использо­вать солнечную радиацию, укрывая поверхность бетонной кон­струкции свегопрозрачным влагонепроницаемым материалом (пленочным, рулонным или листовым).

Мероприятия по уходу за свежеуложенным бетоном в усло­виях жаркого и сухого климата должны фиксироваться в специ­альном журнале контроля за реализуемой технологией.

 

Технические решения обогрева монолитных железобетонных конструкций при выдерживании в зимних условиях. Обогрев конструкций греющими проводами (идея, прави­ла раскладки проводов, основные технологические требования). Конвективный обогрев мо­нолитных конструкций (лекции).

МЕТОД «ТЕРМОСА»

На использовании внутренних источников энергии основан самый распространенный метод выдерживания бетона — метод «термоса». Его сущность заключается в том, что за счет нача­льной энергии и последующей экзотермии цемента массивная теплоизолированная конструкция набирает требуемую проч­ность за расчетный период времени до замерзания


mylektsii.ru - Мои Лекции - 2015-2019 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал