Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Формула наращения




Под наращенной суммой ссуды (долга, депозита, других видов выданных в долг или инвестированных денег) понимают перво­начальную ее сумму с начисленными процентами к концу сро­ка начисления (date of maturity, due date). Наращенная сумма оп­ределяется умножением первоначальной суммы долга (principal) на множитель наращения, который показывает, во сколько раз наращенная сумма больше первоначальной. Расчетная формула зависит от вида применяемой процентной ставки и условий на­ращения.

К наращению по простым процентам обычно прибегают при выдаче краткосрочных ссуд (на срок до 1 года) или в случаях, когда проценты не присоединяются к сумме долга, а периоди­чески выплачиваются. Для записи формулы наращения про­стых процентов (simple interest) примем обозначения:

I — проценты за весь срок ссуды;

Р — первоначальная сумма долга;

S — наращенная сумма, т. е. сумма в конце срока;

i — ставка наращения процентов (десятичная дробь);

п — срок ссуды.

Если срок измеряется в годах (как это обычно и бывает), то i означает годовую процентную ставку. Соответственно каждый год приносит проценты в сумме Pi. Начисленные за весь срок проценты составят

I = Pni. Наращенная сумма, таким образом, находится как

S = Р + I = Р + P = Р(1 + ni).

ПРИМЕР. Определим проценты и сумму накопленного долга, если ссуда равна 700 тыс.руб., срок 4 года, проценты простые по ставке 20% годовых (i = 0,2):

I = 700 х 4 х 0,2 = 560 тыс. руб.;

S = 700 + 560 = 1260 тыс. руб.

Увеличим теперь ставку в два раза. Сумма процентов при этом, естественно, удвоится. Однако наращенная сумма увеличится в

(1 + 2 х 4 х 0,2) / (1 + 4 х 0,2) = 1,444 раза.

 

2. Практика расчета процентов для краткосрочных ссуд.Пос­кольку процентная ставка, как правило, устанавливается в рас­чете за год, то при сроке ссуды менее года необходимо опреде­лить, какая часть годового процента уплачивается кредитору. Аналогичная проблема возникает и в случаях, когда срок ссуды меньше периода начисления.

Рассмотрим наиболее распространенный в практике случай — с годовыми периодами начисления. Очевидно, что срок ссу­ды необязательно равен целому числу лет. Выразим срок п в ви­де дроби

п = t/K

где t — число дней ссуды, К — число дней в году, или времен­ная база начисления процентов (time basis).

При расчете процентов применяют две временные базы: К = 360 дней (12 месяцев по 30 дней) или К = 365, 366 дней. Если К = 360, то получают обыкновенные или коммерческие про­центы (ordinary interest), а при использовании действительной продолжительности года (365, 366 дней) рассчитывают точные проценты (exact interest).



Число дней ссуды также можно измерить приближенно и точно. В первом случае продолжительность ссуды определяется из условия, согласно которому любой месяц принимается рав­ным 30 дням. В свою очередь точное число дней ссуды опреде­ляется путем подсчета числа дней между датой выдачи ссуды и датой ее погашения. День выдачи и день погашения считаются за один день. Итак, возможны и применяются на практике три варианта расчета простых процентов.

1. Точные проценты с точным числом дней ссуды. Этот вари­ант, естественно, дает самые точные результаты. Данный спо­соб применяется центральными банками многих стран и круп­ными коммерческими банками, например, в Великобритании, США. В коммерческих документах он обозначается как 365/365 или ACT/ACT.

2. Обыкновенные проценты с точным числом дней ссуды. Этот метод, иногда называемый банковским (Banker's Rule), распро­странен в межстрановых ссудных операциях коммерческих банков, во внутристрановых — во Франции, Бельгии, Швейца­рии. Он обозначается, как 365/360 или АСТ/360. Этот вариант дает несколько больший результат, чем применение точных процентов. Заметим, что при числе дней ссуды, превышающем 360, данный способ приводит к тому, что сумма начисленных процентов будет больше, чем предусматривается годовой став­кой. Например, если t = 364, то п = 364/360 = 1,01111. Мно­житель наращения за год при условии, что / = 20%, составит 1,20222.

3. Обыкновенные проценты с приближенным числом дней ссуды. Такой метод применяется тогда, когда не требуется большой точности, например при промежуточных расчетах. Он принят в

практике коммерческих банков Германии, Швеции, Дании. Метод условно обозначается как 360/360.

Очевидно, что вариант расчета с точными процентами и приближенным числом дней ссуды лишен смысла и не приме­няется.

Поскольку точное число дней ссуды в большинстве случаев, но разумеется, не всегда, больше приближенного (в чем легко убедиться, определив среднее за год число дней в месяце, кото­рое равно 30,58), то метод начисления процентов с точным чис­лом дней ссуды обычно дает больший рост, чем с приближен­ным.


mylektsii.ru - Мои Лекции - 2015-2019 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал