Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Дисперсия. Дисперсия– это средняя арифметическая квадратов отклонений каждого значения признака от общей средней
Дисперсия – это средняя арифметическая квадратов отклонений каждого значения признака от общей средней. Дисперсия обычно называется средним квадратом отклонений и обозначается s2. В зависимости от исходных данных дисперсия может вычисляться по средней арифметической простой или взвешенной: - дисперсия невзвешенная (простая); - дисперсия взвешенная. 4. Среднее квадратическое отклонение - это обобщающая характеристика абсолютных размеров вариации признака в совокупности. Выражается оно в тех же единицах измерения, что и признак (в метрах, тоннах, процентах, гектарах и т. д.). Среднее квадратическое отклонение представляет собой корень квадратный из дисперсии и обозначается s: - среднее квадратическое отклонение невзвешенное; - среднее квадратическое отклонение взвешенное. Среднее квадратическое отклонение является мерилом надежности средней. Чем меньше среднее квадратическое отклонение, тем лучше средняя арифметическая отражает всю представляемую совокупность. Относительные показатели вариации Коэффициент вариации, % характеризует относительную меру отклонения измеренных значений от среднеарифметического: , Чем больше значение коэффициента вариации, тем относительно больший разброс и меньшая выравненность исследуемых значений. Если коэффициент вариации меньше 10%, то изменчивость вариационного ряда принято считать незначительной, от 10% до 20% относится к средней, больше 20% и меньше 33% к значительной и если коэффициент вариации превышает 33%, то это говорит о неоднородности информации и необходимости исключения самых больших и самых маленьких значений.
Расчет основных показателей вариации рассмотрим на следующем примере: Пусть имеются 2 статистические совокупности, в которых значения признака одинаковые, а распределение частот различное.
|