Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Четвертая основная граничная задача фильтрации ⇐ ПредыдущаяСтр 4 из 4
Оценка параметра и ОП качества вскрытия продуктивного пласта ( пласт неоднородный k = var)
В том случае, когда приствольная зона скважины представляет собой область непрерывного изменения проницаемости , уравнение неразрывности (3.57) видоизменится:
Для удаленной части пласта распределение давления соответствует решению (3.51), а для приствольной зоны путем интегрирования (3.56) находим
Примем закономерность изменения проницаемости в области в виде
где – проницаемость удаленной части пласта, т. е. при – проницаемость стенки скважины .
где , а расход вычисляется по обобщенной формуле Дюпюи (3.65), в которой приведенный радиус скважины надо принять
Пусть, например, при бурении проницаемого интервала и ,
5. Плоская фильтрация в вертикально-трещиноватом пласте Если пласт содержит упорядоченную систему трещин, то в нем благодаря анизотропии проницаемости плоско-радиальный характер фильтрации не будет иметь место (см. разд. 2). Рассмотрим случай, когда одно из главных направлений анизотропии Ox3 совпадает с направлением оси скважины Oz (например, упорядоченная система вертикальных трещин в вертикальной скважине). Тогда два других главных направления анизотропии Ох1 и Ох2 расположены в плоскости , т. е. параллельно кровле и подошве пласта. При заданных однородных граничных условиях в скважине и на поверхности питания (3.55) фильтрация будет плоской, так как , но не радиальной. В плоскости х1х2 имеют место обобщенный закон Дарси [см. формулу (2.40)]
и соответствующее ему уравнение неразрывности [см. формулу (2.42)]
Как было сказано в разд. 2, введением новой системы координат
уравнение (3.74), заданное в анизотропной плоскости х1х2, преобразуется в уравнение Лапласа
где , – радиус контура питания в плоскости . Отсюда следует, что эквипотенциальной поверхностью являются: окружность в плоскости и эллипс в плоскости х1х2, где – полуоси эллипса. Это означает, что контуром питания (где ) в анизотропном пласте может быть только эллипс
Согласно (3.59) этому эллипсу в плоскости соответствует окружность . В то же время окружность преобразуется в эллипс
Поэтому в строгой постановке первая основная граничная задача формулируется так: найти решение уравнения (3.76), удовлетворяющее условию в точках эллипса (3.79) и условию на окружности . Однако для определения расхода ‚ достаточно хорошее приближение получается, если эллипс (3.79) заменить эквивалентной окружностью радиуса
Используя в (3.61) условие при получим
где
Отсюда следует, что при прочих равных условиях в анизотропном пласте расход жидкости выше, чем в изотропном пласте эквивалентной гидропроводности .
В нижеследующей таблице приведены значения при нескольких параметрах анизотропии и .
Видно, что влияние анизотропии заметно при больших отношениях . 6. Определение расхода в неоднородном анизотропном пласте Если после вскрытия пласта проницаемости и в приствольной зоне скважины изменились и стали равными и то возникает задача об определении расхода в неоднородном анизотропном пласте. Приближенное решение этой задачи может быть без труда найдено при следующих условиях: главные направления проницаемостей в приствольной зоне и удаленной части пласта совпадают; границей раздела областями является эллипс
где – радиус границы раздела в преобразованной плоскости . Обозначим давление на общей границе через и рассмотрим каждую из областей независимо друг от друга. Так как подобным эллипсам (3.78) и (3.85) в плоскости соответствуют концентрические окружности и , то для удаленной части пласта имеем [см. формулу (3.81)]
Заменив эти эллипсы эквивалентными окружностями, радиусы которых равны
получим приближенную формулу для расхода жидкости
Определив из равенства правых частей (3.86) и (3.88), после преобразования получим следующую обобщенную формулу Дюпюи:
где
Видно, что при и имеем , т. е. влияние анизотропии исчезает, если призабойная зона скважины в результате кольматации приобрела свойства изотропной среды. Аналогичный результат имеет место при и , что возможно, например, при гидроразрыве изотропного пласта. Отсюда следует вывод гидроразрыв гранулярного коллектора в ПЗ не может привести к заметному росту продуктивности скважины. Его положительная роль сводится к разрушению зоны кольматации и тем самым восстановлению потенциальной продуктивности пласта. Только при гидроразрыве анизотропного пласта, когда , продуктивность скважины может быть увеличена. 7. Несовершенное вскрытие пластов Фильтрация, отличная от плоско-радиальной, возникает и в том случае, когда пласт вскрыт не на всю мощность, а частично или часть пласта перекрыта обсадной колонной, или связь пластовой и скважинной жидкостей осуществляется через перфорационные отверстия в колонне. В этих случаях говорят о несовершенном вскрытии пласта и задают граничное условие лишь на открытой части поверхности , а на остальной условие непроницаемости . Течение жидкости в таких условиях вблизи скважины пространственно, и, естественно, решение задачи фильтрации усложняется. Известны различные приближенные аналитические решения этих задач и экспериментальные исследования на моделях, учитывающие тот или иной вид несовершенства вскрытия пласта. Общий вывод, который следует из полученных решений, сводится к тому, что расход жидкости и в этих случаях вычисляется по обобщенной формуле Дюпюи (3.49), где приведенный радиус скважины
здесь – показатель фильтрационного сопротивления, связанный с несовершенством вскрытия пласта. Отношение расхода жидкости при несовершенном вскрытии к расходу при совершенном вскрытии пласта в тех же условиях определяют аналогично параметру ОП [см. формулу (3.66)] коэффициент сопротивления:
В общем случае где и – показатели сопротивления, обусловленные несовершенством по степени и характеру вскрытия пласта. Для случая вскрытия части пласта Маскет, используя метод источников, нашел, что при показатель несовершенства по степени вскрытия можно определить по формуле
Здесь ,
Представление о функции и показателе дает табл. 3.
Таблица 3
Например, при Rc = 0, 1 м, h = 20 м, h1 = 10 м, согласно таблице при h / Rc =200 и h1 =0, 5, получим С1= 3, 35, что при соответствует коэффициенту сопротивления КС = 0, 65.
Существенное значение в этой задаче могут иметь различные проницаемости вдоль пласта и в направлении, перпендикулярном к пласту , т. е. анизотропия проницаемости. Доказано, что учесть этот фактор можно, если заменить истинную мощность пласта приведенной .
Если, например, , то по данным предыдущего примера имеем , и, согласно формулам, и .
Несовершенство по характеру вскрытия имеет место, когда связь со скважиной осуществляется через круглые или щелевые отверстия в обсадной колонне. В этом случае показатель несовершенства может быть вычислен по следующим приближенным формулам:
Рис. 3.6 Зависимость показателя снижения фильтрационного сопротивления от величины дополнительной зоны фильтрации при h / Re = 15: 1 2, 3 соответственно при Rф / Rc = 8; 5; 3.
Рис. 3.7Зависимость показателя снижения фильтрационного сопротивления от мощности пласта и радиуса фильтра при l / Rф = 2: 1, 2, 3 соответственно при Rф / Rc = 8; 5; 3
Приведем решение задачи, когда приствольная зона скважины оборудована искусственным фильтром (2)высотой и проницаемостью , отличной от проницаемости пласта (1)(рис. 3.5). Приведенный радиус в этом случае
где – параметр «скин-эффекта» [см. формулу (3.71)]; показатель снижения сопротивления, обусловленный наличием дополнительной зоны ; φ – функция безразмерных параметров , , . На рис. 3.6 показаны графики зависимости φ от при трех значениях отношения и . Из него следует, что с увеличением функция быстро растет до асимптотического значения, которое наступает при . Это доказывает нецелесообразность установки фильтра высотой больше чем . Влияние мощности пласта на φ иллюстрируется графиками на рис.3.7 при тех же значениях и .
|