Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Адаптерные функции т-РНК и их роль в реализации генетического кода.






Во всех клетках имеется набор транспортных РНК (тРНК)- небольших молекул, размеры которых колеблются от 70 до 90 нуклеотидов. Эти РНК, присоединяясь одним своим концом к специфическому кодону мРНК, а другим присоединяя аминокислоту, кодируемую данным триплетом, позволяют аминокислотам выстраиваться в порядке, диктуемом нуклеотидной последовательностью мРНК. Каждая тРНК может переносить только одну из 20 аминокислот, используемых в синтезе белка. Транспортную РНК, переносящую глицин, обозначают тРНКGly и т. д. Для каждой из 20 аминокислот имеется по меньшей мере один тип тРНК, для большей же части аминокислот их имеется несколько. Прежде чем включиться в синтезируемую белковую цепь, аминокислота присоединяется своим карбоксильным концом к 3'-концу соответствующей молекулы тРНК. Этим достигаются две цели. Во-первых, и это наиболее важно, аминокислота ковалентно присоединяется к тРНК, содержащей правильный антикодон - трехнуклеотидную последовательность, комплементарную трехнуклеотидному кодону, определяющему эту аминокислоту в молекуле мРНК. Спаривание кодона с антикодоном позволяет каждой аминокислоте включиться в растущую белковую цепь в том порядке, который диктуется нуклеотидной последовательностью мРНК, так что генетический код используется для перевода (трансляции) нуклеотидных последовательностей нуклеиновых кислот в аминокислотные последовательности белков. В этом заключается важная «адапторная» функция тРНК: присоединяясь одним концом к аминокислоте, а другим спариваясь с кодоном, тРНК переводит последовательность нуклеотидов в последовательность аминокислот.

^ 89.Генетическая роль и механизмы трансляции. Трансляция начинается со стартового кодона АУГ, который при локализации в смысловой части структурного гена кодирует аминокислоту метионин. Каждую аминокислоту доставляет к полисоме транспортная РНК (тРНК), специфичная к данной аминокислоте. тРНК выполняет роль посредника между кодоном мРНК и аминокислотой. Молекулы тРНК узнают в цитоплазме соответствующий триплет (кодон в мРНК) по принципу спаривания комплементарных азотистых оснований. тРНК, которая подходит к малой субчастице, образует связь кодой — аитикодои, при этом одновременно передает свою аминокислоту в аминоацнльный участок (А-участок) большой субъединице. К кодону АУГ «подходит» антикодон только той тРНК, которая переносит метионин. Поэтому прежде всего к рибосоме доставляется метионин. Затем кодон АУГ переходит на пептидильный участок большой субъединицы (Р-участок). В результате этих процессов образуется транслирующая рибосома — инициирующий комплекс.

Элонгация — это последовательное включение аминокислотных остатков в состав растущей полипептидной цепи. Каждый акт элонгации состоит из трех этапов:

1. узнавание кодона, которое заключается в связывании антикодона с очередной молекулой тРНК, несущей аминокислоту, с кодоном свободного А-участка на рибосоме;

2. бразование пептидной связи, которое происходит лишь тогда, когда оба участка А и Р заняты молекулами тРНК. Часть большой субъединицы рибосомы — фермент пептидилтрансферазу, катализирующий образование пептидной связи;

3. ранслокация, где тРНК участка Р, не связанная с пептидом, покидает рибосому. Затем молекула тРНК с полипептидом переходят из А на Р-участок и, наконец, рибосома перемещается вдоль РНК на один кодон.

Терминация (окончание синтеза) происходит по команде кодонов УАА, УАГ, УГА. В природе не существует таких молекул тРНК, антикодоны которых соответствовали бы этим кодонам.

Каждая мРНК транслируется, как правило, несколько раз, после чего разрушается. Среднее время жизни молекулы мРНК около 2 мин. Разрушая старые и образуя новые мРНК, клетка может довольно строго регулировать как тип продуциру' О MUX белков, так и их количество. Это регуляция синтеза белка на уровне транскрипции. У эукариот возможна регуляция и на уровне трансляции.

Синтез белка — один из существеннейших показателей жизни. Жизнь каждого индивидуума начинается с оплодотворенной яйцеклетки, которая многократно делится. Вскоре в образовавшейся клеточной массе начинается дифференцировка: между многими ранее однородными клетками возникают различия. Клетки дифференцируются потому, что в них содержатся разные белки, от присутствия которых зависит, какие реакции будут проистекать в клетке, а также свойства и функции данной клетки. Поскольку любой белок является продуктом гена, то дифференцировка обусловлена тем, что разные гены включаются и выключаются на разных этапах онтогенеза. Кроме того, каждый человек на Земле в прошлом, настоящем или будущем имеет свой неповторимый набор только ему свойственных белков, именно поэтому каждый человек уникален. Исключение составляют монозиготные близнецы, у которых генетический материал идентичен. Именно специфичность белковых наборов обеспечивает иммунный статус каждого человека.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.