Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Оценка надежности уравнения тренда
Выбрав и составив уравнение, проводят оценку его надежности с помощью критерия Фишера, сравнивая его расчетное значение Fр с теоретическими значениями FТ, приведенными в специальных таблицах любого справочника по высшей математике. При этом расчетный критерий Фишера определяется по формуле , (1.58) где k – число параметров (членов) выбранного уравнения тренда; ДА – дисперсия аналитическая; До – дисперсия остаточная в виде разности фактической ДФ и аналитической дисперсий. В свою очередь, фактическая и аналитическая дисперсии отклонений уровней ряда определяются по формулам ; (1.59) . (1.60) Сравнение расчетного и теоретического значений критерия Фишера ведется обычно при уровне значимости 0, 05 с учетом степеней свободы и . При условии Fр> FТ считается, что выбранная математическая модель ряда динамики адекватно отражает обнаруженный в нем тренд. 4.7. Гармонический анализ сезонных колебаний [1] * Особое место при анализе сезонных колебаний занимает выравнивание с помощью ряда Фурье, в котором уровни можно выразить как функцию времени следующим уравнением: . То есть сезонные колебания уровней динамического ряда можно представить в виде синусоидальных колебаний. Поскольку последние представляют собой гармонические колебания, то синусоиды, полученные при выравнивании по ряду Фурье, называют гармониками различных порядков (показатель k в этом уравнении определяет число гармоник). Обычно при выравнивании по ряду Фурье рассчитывают несколько гармоник (чаще не более 4) и затем уже определяют, с каким числом гармоник ряд Фурье наилучшим образом отражает изменения уровней ряда. При выравнивании по ряду Фурье периодические колебания уровней динамического ряда представлены в виде суммы нескольких синусоид (гармоник), наложенных друг на друга. Так, при k=1 ряд Фурье будет иметь вид , а при k=2, соответственно, и так далее. Параметры уравнения теоретических уровней, определяемого рядом Фурье, находят, как и в других случаях, методом наименьших квадратов. Приведем без вывода формулы, используемые для исчисления параметров ряда Фурье: ; ; . Последовательные значения t обычно определяются от 0 с увеличением (приростом), равным , где n – число уровней эмпирического ряда. Например, при n=10 временнЫе точки t можно записать следующим образом: , или (после сокращения) ; ; ; ; ; ; ; ; . При n=12 значения t, соответственно будут ; . Значения и удобно расположить в таблице (для двух гармоник): В следующей таблице приведены исходные данные (графы 1 и 2) и расчет показателей, необходимых для получения уравнений первой и второй гармоники (k=1 и k=2). Искомое уравнение первой гармоники имеет вид . В шестой графе получены теоретические значения объема продажи зимней одежды по месяцам. Очевидно, что они значительно отличаются от эмпирических. Поэтому определим уравнение второй гармоники, т.е. . В девятой графе получены теоретические значения , которые более близки к эмпирическим уровням, чем . Об этом свидетельствует и сумма квадратов отклонений теоретических значений от эмпирических (итого двух последних столбцов). После выбора оптимального уравнения, естественно, что его нужно проверить на адекватность с помощью критерия Фишера (параграф 4.6). В нашем примере FР1 =14, 45> FТ =4, 26, FР2 =7, 60> FТ =4, 12 значит обе модели адекватны и их можно использовать для прогнозирования. Графическое отображение на следующей диаграмме свидетельствует о более точном представлении во второй гармонике. Аналогично рассчитываются параметры уравнения с применением третьей и четвертой гармоник и проверяют близость теоретических значений к эмпирическим.
|