Главная страница
Случайная страница
Разделы сайта
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать?
Продвижение сайта – это не просто процесс, а целый комплекс мероприятий,
направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст,
она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней.
Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
Начать продвижение сайта
Сервис онлайн-записи на собственном Telegram-боте
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание,
но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
Для новых пользователей первый месяц бесплатно.
Чат-бот для мастеров и специалистов, который упрощает ведение записей:
— Сам записывает клиентов и напоминает им о визите;
— Персонализирует скидки, чаевые, кэшбэк и предоплаты;
— Увеличивает доходимость и помогает больше зарабатывать;
Начать пользоваться сервисом
Интегральная теорема Лапласа
Как вычислить вероятность того, что событие А появится в испытаниях не менее раз и не более раз (для краткости будем говорить «от до раз»)? На этот вопрос отвечает интегральная теорема Лапласа:
Теорема. Если вероятность наступления события А в каждом испытании постоянна и отлична от нуля и единицы, то вероятность того, что событие А появится в испытаниях от раз, приближённо равна определённому интегралу где и .
При решении задач, требующих применения интегральной теоремы Лапласа, пользуются специальными таблицами , т.к. неопределённый интеграл не выражается через элементарные функции. В таблице даны значения функции Ф( ) для положительных значении и для =0. Для < 0 пользуются той же таблицей, учитывая, что функция Ф( ) нечётна, т.е. Ф( ) = Ф( ). В таблице приведены значения интеграла лишь до =5, т.к. для > 5 можно принять Ф( ) = 0, 5. Функцию Ф( ) называют функцией Лапласа.
Для того, чтобы можно было пользоваться таблицей функции Лапласа, преобразуем выражение (1) .
Итак, вероятность того, что событие А появится в независимых испытаниях от раз,
, где и .
|