Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Теория работы и описание прибора. Приборы и принадлежности

Приборы и принадлежности

Закрытый стеклянный баллон с краном, манометр, насос

рис. 1

 

Теория работы и описание прибора

Для вещества в любом агрегатном состоянии характерны понятия удельной (с) и молярной (С) теплоемкости. Удельной теплоемкостью вещества называется физическая величина, численно равная количеству теплоты, необходимой для нагревания единицы массы вещества на 1 Кельвин.

(1)

Молярной теплоемкостью вещества называется физическая величина, численно равная количеству теплоты, необходимой для нагревания одного моля вещества на 1 Кельвин.

(2)

Здесь Q – количество теплоты, которое было затрачено на нагре­вание вещества от температуры Т1 до Т2. DT = Т2 — Т1. Для ве­щества в газообразном состоянии величины удельной или моляр­ной теплоёмкости газа существенно зависят от того, при каких ус­ловиях он нагревается: при постоянном объёме или при постоян­ном давлении.

В первом случае сообщенное газу тепло идёт только на уве­личение внутренней энергии газа, так как объём газа не изменяет­ся и поэтому не совершается работа расширения. Во втором слу­чае требуётся дополнительное количество теплоты, необходимое для совершения работы расширения газа, так как неизменность давления обеспечивается увеличением объёма газа. Поэтому у газа различают две удельные и две молярные теплоёмкости: теплоём­кость при постоянном объёме и теплоемкость при постоянном давлении. Удельной (молярной) теплоемкостью газа при постоян­ном объёме сv (Cv), или при постоянном давлении сp (Cp) на­зывается физическая величина, численно равная количеству теп­лоты, необходимой для нагревания единицы массы (моля) на 1 кельвин при постоянном объёме или при постоянном давлении со­ответственно. Между молярной и удельной теплоемкостями оче­видно соотношение:

;

где М — молярная масса газа.

Очевидно, что молярная теплоемкость газа при постоянном давлении больше молярной теплоёмкости при постоянном объёме,

так как , а ,

где R — молярная (универсальная) газовая постоянная, численно равная работе расширения одного моля газа при нагревании его на один кельвин. Тогда .

Обозначим отношение теплоёмкостей буквой g, тогда

(3)

Величина g зависит только от числа степеней свободы молекул, из которых состоит газ. Так как , а

где i — число степеней свободы, то

(4)

Численное значение g различно для одно-, двух или многоатом­ных газов и зависит от числа степеней свободы (для одно атомных i = З, двухатомных i = 5 и многоатомных i = 6). На двухатом­ные газы (N2 и О2) приходится приблизительно 99% общего соста­ва воздуха, поэтому величину i можно считать приближённо рав­ной 5. Величина отношения теплоёмкостей g имеет большое зна­чение в изучении адиабатных процессов и процессов близких к ним. Например, от этой величины зависит скорость распростране­ния звука в газах, течение газов по трубам со сверхзвуковыми скоростями и другие процессы.

В настоящей работе определяется отношение теплоемкостей g для воздуха (принимая его за двухатомный газ) методом адиа­батного расширения, который основан на применении уравнений адиабатного и изотермического процессов.

Адиабатным процессом называется изменение состояния га­за, при котором не происходит теплообмена с окружающей сре­дой. В этом случае и формула первого закона термодина­мики примет вид , т.е. при адиабат­ном процессе расширения газом совершается работа только расчет изменения запаса внутренней энергии. Этот процесс описы­вается уравнением Пуассона

(5)

где р — давление и V — объём газа.

Изотермическим называется процесс, который протекает при постоянной температуре, те. Т = const.

В этом случае dT =0, следовательно, dU =0 и тогда из первого закона термодинамики получим . Таким образом, при изотермическом процессе всё подводимое тепло расхо­дуется на работу расширения газа.

Экспериментальная установка состоит из стеклянного баллона А (рис. 11), соёдинённого с манометром В и насосом Н. Через кран К1 воздух нагнетается в баллон, а через кран К1 — выпускается. Если кран К2 открыт, баллон сообщается с атмосферным воз­духом и давление р внутри него равно атмосферному, разность уровней манометра равна нулю, а температура Т в баллоне равна температуре окружающей среды. В процессе работы газ, заключенный в баллоне, проходит последовательно три состояния Если закрыть кран К2 и накачать в баллон небольшое количество воз­духа, то давление в баллоне будет выше атмосферного, что отме­чается возникновением разности уровней жидкости в манометре. При сжатии воздух в баллоне начнёт нагреваться, затем постепен­но примет температуру окружающей среды, и тогда разность уровней в манометре будет устойчивой, равной р1. Давление воздуха в баллоне примет величину р+р1,

где р — атмосферное давление,

р1 — добавочное давление.

Таким образом, состояние воздуха внутри баллона, которое назовём I состоянием, характеризуется параметрами р + р1; V1 и T1. Если затем открыть кран К2, то часть воздуха выйдет из бал­лона и давление сравняется с атмосферным, температура газа по­низится до Т2, а объём будет равен V2. Этот процесс расширения происходит очень быстро и может считаться адиабатным, так как за короткое время процесса не происходит теплообмена между воздухом в баллоне и окружающей средой. Состояние газа, соответствующее концу адиабатного процесса назовём П состоянием газа с параметрами р; V2 и Т2. Адиабатный процесс описывается

уравнением Пуассона .

Из уравнения Пуассона следует, что переход газа из I состояния во П может быть выражен в виде:

откуда

(6)

Охладившийся при расширении воздух в баллоне через неко­торое время вследствие теплообмена нагреется до температуры внешней среды T1, давление возрастёт до некоторой величины р + р2, где р2 — новая разность уровней в манометре. Об]ём воз­духа не изменится и будет равен V2. Это состояние назовём III. Переход газа из II состояния в III происходит в условиях постоян­ного объёма — изохорно. III состояние характеризуется парамет­рами р + р2; V2 и T1. Так как в I и III состояниях воздух имеет одну и ту же температуру (процесс изотермический), то, применяя закон Бойля-Мариотта, будем иметь:

 

откуда получим

(7)

Возведя обе части уравнения в степень g, получим

(8)

Пользуясь выражением (6) и приравняв правые части (8) и (6), получим

(9)

Прологарифмируем выражение (9) и, решая относительно g, получим:

(10)

Так как практически давление р, р+р1 и р+р2 отличаются друг от друга незначительно, то в формуле (10) разности логарифмов можно принять пропорциональными разностям самих давлений и приближенно положить

(11)

<== предыдущая лекция | следующая лекция ==>
Окончательный результат | Теория работы и описание приборов. Парообразованием называется переход вещества из жидкого состояния в пар




© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.