Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Методы определения значения pH

РЕФЕРАТ

Методы и приборы для измерения кислотности.

 

Выполнил: студент 289 гр.

Цыренжапов Б.

Проверил: Зубрицкий Э.В.

 

Улан-Удэ 2012

Методы определения значения pH

Для определения значения pH растворов широко используют несколько методик. Водородный показатель можно приблизительно оценивать с помощью индикаторов, точно измерять pH-метром или определять аналитически путём, проведением кислотно-основного титрования.

1. Для грубой оценки концентрации водородных ионов широко используются кислотно-основные индикаторы — органические вещества-красители, цвет которых зависит от pH среды. К наиболее известным индикаторам принадлежат лакмус, фенолфталеин, метиловый оранжевый (метилоранж) и другие. Индикаторы способны существовать в двух по-разному окрашенных формах — либо в кислотной, либо в основной. Изменение цвета каждого индикатора происходит в своём интервале кислотности, обычно составляющем 1—2 единицы.

Для расширения рабочего интервала измерения pH используют так называемый универсальный индикатор, представляющий собой смесь из нескольких индикаторов. Универсальный индикатор последовательно меняет цвет с красного через жёлтый, зелёный, синий до фиолетового при переходе из кислой области в щелочную. Определения pH индикаторным методом затруднено для мутных или окрашенных растворов.

2. Использование специального прибора — pH-метра — позволяет измерять pH в более широком диапазоне и более точно (до 0, 01 единицы pH), чем с помощью индикаторов. Ионометрический метод определения pH основывается на измерении милливольтметром-ионометром ЭДС гальванической цепи, включающей специальный стеклянный электрод, потенциал которого зависит от концентрации ионов H+ в окружающем растворе. Способ отличается удобством и высокой точностью, особенно после калибровки индикаторного электрода в избранном диапазоне рН, позволяет измерять pH непрозрачных и цветных растворов и потому широко используется.

3. Аналитический объёмный метод — кислотно-основное титрование — также даёт точные результаты определения кислотности растворов. Раствор известной концентрации (титрант) по каплям добавляется к исследуемому раствору. При их смешивании протекает химическая реакции. Точка эквивалентности — момент, когда титранта точно хватает, чтобы полностью завершить реакцию, — фиксируется с помощью индикатора. Далее, зная концентрацию и объём добавленного раствора титранта, вычисляется кислотность раствора.

4. Влияние температуры на значения pH

0.001 мол/Л HCl при 20 °C имеет pH=3, при 30 °C pH=3

0.001 мол/Л NaOH при 20 °C имеет pH=11.73, при 30 °C pH=10.83

Влияние температуры на значения pH объясняется различной диссоциацией ионов водорода (H+) и не является ошибкой эксперимента. Температурный эффект невозможно компенсировать за счет электроники pH-метра.

 

Кислотность водного раствора обусловлена наличие в нем положительных водородных ионов Н+ и оценивается концентрацией в 1 литре раствора C(H+) (моль/л или г/л). В абсолютно чистой воде концентрации ионов Н+ и ОН– равны и раствор нейтрален. В кислых растворах преобладают ионы Н+, в щелочных – ионы ОН–, однако их произведение в любых условиях постоянно. Следовательно, увеличение концентрации одного типа ионов приводит к уменьшению концентрации другого типа в том же количестве. На практике степень кислотности (или щелочности) раствора выражается водородным показателем рН (от латинского «пундус гидрогениум» — вес водорода), представляющим собой отрицательный десятичный логарифм молярной концентрации водородных ионов рН = –lgC(H+). Эта величина может изменяться в небольших пределах – всего от –1 до 15 (а чаще – от 0 до 14). При этом изменению концентрации ионов Н+ в 10 раз соответствует изменение рН на одну единицу. Таким образом, концентрация водородных ионов в среде с рН = 5 в 10, 100 и 1000 раз выше, чем в среде с рН = 6, 7 и 8 соответственно.

 

Кислыми называют растворы, в которых рН < 7, и, соответственно, чем ниже уровень pH, тем кислее раствор. В щелочных растворах рН > 7, и, чем ближе это значение к 14, тем раствор считается более щелочным. Установленная шкала кислотности идет от рН = 0 (крайне высокая кислотность) до рН = 14 (крайне высокая щелочность). Нейтральная среда имеет показатель ph, равный 7 (при комнатной температуре).

 

Показатель рН непосредственно влияет на нормальное протекание всех биохимических процессов у живых организмов. Очень важно, чтобы все процессы проходили при строго заданной кислотности. В частности, это необходимо для нормального функционирования биологических катализаторов – ферментов (при выходе за эти пределы их активность может резко снижаться). В клетках организма рН имеет значение около 7, во внеклеточной жидкости – 7, 4. Наиболее чувствительны к изменению ph нервные окончания, которые находятся вне клеток. Кроме того, организм использует данное изменение ph в сигнальных целях: при механических или термических повреждениях тканей стенки клеток разрушаются и их содержимое попадает на нервные окончания. Было доказано, что боль вызывают именно катионы водорода, причем с уменьшением рН раствора боль усиливается, - и это лишь частный пример роли ph для живых организмов. Для примера, чистая природная, в частности дождевая, вода в отсутствие загрязнителей тем не менее имеет слабокислую реакцию (рН = 5, 6), поскольку в ней легко растворяется углекислый газ с образованием слабой угольной кислоты.

 

Для определения степени кислотности используют специальные приборы - рН-метры, которые бывают весьма недешевы. Такие приборы измеряют электрический потенциал специального электрода (ЭДС), погруженного в раствор, и этот потенциал зависит от концентрации ионов водорода в растворе, и весьма вероятно измерить его с высокой точностью.

 

Простым способом определения характера среды является применение индикаторов – химических веществ, окраска которых изменяется в зависимости от рН среды. Наиболее распространенные индикаторы – фенолфталеин, метилоранж, лакмус. Метиловый оранжевый при рН < 3, 1 имеет красный цвет, а при рН > 4, 4 – желтый; лакмус при рН < 6, 1 красный, а при рН > 8 – синий и т.д. В домашних условия без наличия этих индикаторов для определения кислотности среды вполне пригодны естественные красители из красной капусты и черной смородины.

Активная кислотность характеризуется концентрацией свободных ионов водорода в растворе. Значение рН определяют как отрицательный логарифм концентрации ионов водорода.

 

Величина рН характеризует качество большинства пищевых продуктов, этот показатель можно применять для контроля биохимических процессов, происходящих при переработке и хранении пищевых продуктов. Кроме того, с активной кислотностью среды теснейшим образом связана жизнедеятельность микроорганизмов.

 

Концентрацию водородных ионов можно определить по потенциалу (потенциометрический метод), который возникает на границе различных электродов, помещенных в исследуемый раствор. При погружении электрода в раствор на границе электрод — раствор возникает электрический потенциал, так как ионы электрода переходят в раствор. При этом электрод (металл) заряжается положительно, а пограничный слой раствора — отрицательно.

 

Возникающие пограничные потенциалы функционально связаны с активной концентрацией ионов водорода. Однако технически можно измерить лишь разность потенциалов. Поэтому прибор для измерения рН состоит из двух полуэлементов или электродов: потенциал одного из них прямо или косвенно зависит от концентрации определяемых ионов — его называют индикаторным электродом; и второй электрод, относительно которого измеряется потенциал индикаторного электрода, — называется электродом сравнения.

 

При помощи рН-метра измеряют разность потенциалов между двумя электродами, помещенными в раствор. Основой такой системы служит электрод, потенциал которого зависит от рН. Чаще всего в качестве такой рН-зависимой ячейки используют стеклянный электрод, принцип действия которого основан на том, что некоторые типы боросиликатно-го стекла проницаемы для ионов Н+, но непроницаемы для любых других катионов или анионов. Если тонкий слой такого стекла поместить между двумя растворами с различными концентрациями ионов Н+, эти ионы будут диффундировать сквозь стекло из раствора с высокой концентрацией ионов водорода в раствор с низкой концентрацией. Стеклянный электрод содержит 0, 1-молярный раствор соляной кислоты в кон-

 

такте со стеклом, проницаемым для Н+-ионов. К измерительному прибору его присоединяют проволокой, покрытой хлоридом серебра и погруженной в соляную кислоту (рис. 1).

Цепь замыкается при погружении в раствор электрода сравнения, который чаще всего содержит пасту Hg/HgCl2 в насыщенном растворе хлорида калия. Хлорид калия служит для создания контакта между Hg/HgCl2 — полуэлементом и раствором, в котором проводят измерение.

 

 

<== предыдущая лекция | следующая лекция ==>
Устройство и принципы работы приборов для измерения рН | Мировоззрение как понятие. Структура мировоззрения.




© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.