Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Краткие теоретические сведения. Рекурсивной (самовызываемой или самовызывающей) называют функцию, которая прямо или косвенно вызывает сама себя.
Рекурсивной (самовызываемой или самовызывающей) называют функцию, которая прямо или косвенно вызывает сама себя. При каждом обращении к рекурсивной функции создается новый набор объектов автоматической памяти, локализованных в коде функции. Возможность прямого или косвенного вызова позволяет различать прямую или косвенную рекурсии. Функция называется косвенно рекурсивной в том случае, если она содержит обращение к другой функции, содержащей прямой или косвенный вызов первой функции. В этом случае по тексту определения функции ее рекурсивность (косвенная) может быть не видна. Если в функции используется вызов этой же функции, то имеет место прямая рекурсия, т.е. функция по определению рекурсивная. Рекурсивные алгоритмы эффективны в задачах, где рекурсия использована в самом определении обрабатываемых данных. Поэтому изучение рекурсивных методов нужно проводить, вводя динамические структуры данных с рекурсивной структурой. Рассмотрим вначале только принципиальные возможности, которые предоставляет язык Си для организации рекурсивных алгоритмов. В рекурсивных функциях необходимо выполнять следующие правила. 1. При каждом вызове в функцию передавать модифицированные данные. 2. На каком-то шаге должен быть прекращен дальнейший вызов этой функции, это значит, что рекурсивный процесс должен шаг за шагом упрощать задачу так, чтобы для нее появилось нерекурсивное решение, иначе функция будет вызывать себя бесконечно. 3. После завершения очередного обращения к рекурсивной функции в вызывающую функцию должен возвращаться некоторый результат для дальнейшего его использования. Пример 1. Заданы два числа a и b, большее из них разделить на меньшее, используя рекурсию. Текст программы может быть следующим: ... double proc(double, double); void main (void) { double a, b; puts(“ Введи значения a, b: ”); scanf(“%lf %lf”, & a, & b); printf(“\n Результат деления: %lf”, proc(a, b)); } //––––––––––––––––––– Функция ––––––––––––––––––––– double proc(double a, double b) { if (a< b) return proc (b, a); else return a/b; } Если a больше b, условие, поставленное в функции, не выполняется и функция proc возвращает нерекурсивный результат. Пусть теперь условие выполнилось, тогда функция proc обращается сама к себе, аргументы в вызове меняются местами и последующее обращение приводит к тому, что условие вновь не выполняется и функция возвращает нерекурсивный результат. Пример 2. Функция для вычисления факториала неотрицательного значения k (для возможных отрицательных значений необходимо добавить дополнительные условия). double fact (int k) { if (k < 1) return 1; else return k * fact (k – 1); } Для нулевого значения параметра функция возвращает 1 (0! = 1), в противном случае вызывается та же функция с уменьшенным на 1 значением параметра и результат умножается на текущее значение параметра. Тем самым для значения параметра k организуется вычисление произведения k * (k –1) * (k –2) *... * 3 * 2 * 1 * 1 Последнее значение «1» – результат выполнения условия k < 1 при k = 0, т.е. последовательность рекурсивных обращений к функции fact прекращается при вызове fact (0). Именно этот вызов приводит к последнему значению «1» в произведении, так как последнее выражение, из которого вызывается функция, имеет вид: 1 * fact (1 – 1).
|