![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Материалы для изготовления полупроводников и строение фотоэлемента
Преобразование энергии в ФЭП основано на фотоэлектрическом эффекте, который возникает в неоднородных полупроводниковых структурах( т.е. в фотоэлементе, состоящего из двух полупроводников разной проводимости) при воздействии на них солнечного излучения. Для получения этого эффекта используются специальные вещества – полупроводники. Они бывают двух типов: с p- и n-проводимостью. N-проводимость означает избыток электронов в веществе, p-, соответственно, - их недостаток Неоднородность структуры ФЭП может быть получена: - легированием одного и того же полупроводника различными примесями (создание p-n переходов), например, кремний с добавкой фосфора для получения слоя с n-проводимостью (электронная проводимость), кремний с добавкой бора для получения слоя с р-проводимостью (дырочная проводимость; - путём соединения различных полупроводников с неодинаковой шириной запрещённой зоны — энергии отрыва электрона из атома (создание гетеропереходов); - за счёт изменения химического состава полупроводника, приводящего к появлению градиента ширины запрещённой зоны (создание варизонных структур). Эффективность преобразования зависит от электрофизических характеристик неоднородной полупроводниковой структуры (фотоэлемента) а также оптических свойств ФЭП, среди которых наиболее важную роль играет фотопроводимость. · арсенид галлия (жесткие, тяжёлые модули с КПД 10-25%, сохраняют работоспособность до температур +150°С, спектр 0.5-0.9 – " видимый", дорогие); · монокристаллический кремний и поликристаллический кремний (жесткие, КПД 12-20% – уменьшается при нагреве - 0.45%/°С считая от +25°С, спектр 0.5-1.0 – " видимый + инфракрасный"); Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение · аморфный кремний (гибкие батареи, КПД 5-10%, спектр 0.2-0.7 – " ультрофиолет+видемый"); · сульфидно-кадмиевые (тонкоплёночные – гибкие, КПД 5-10% – стабилен до температур +100°С, спектр 0.2-0.7– " ультрафиолет"); · CIGS – медь, индий, галлий и селен. Основной недостаток арсенида галлия – высокая стоимость. Для удешевления производства предлагается формировать солнечные элементы на более дешевых подложках; выращивать слои GaAs на удаляемых подложках или подложках многократного использования. Кремний до сих пор остается основных материалом для производства фотоэлементов. Вообще кремний (Silicium, Silicon) — второй по распространенности элемент на Земле, запасы его огромны. Однако в промышленном его использовании есть одна большая проблема — его очистка. Процесс этот очень трудоемкий и затратный, поэтому чистый кремний стоит дорого. Сейчас ведется поиск аналогов, которые бы не уступали кремнию по КПД. Перспективными считаются соединения меди, индия, селена, галлия и кадмия, а также органические фотоэлементы. На основе кремния производятся фотопанели трех видов: 1 Из монокристаллов. Для их изготовления выращиваются монокристаллы с однородной структурой. В результате такие фотоячейки отличаются равномерной поверхностью и, как следствие, лучше поглощают солнечные лучи. Иными словами, их КПД выше, чем у других видов, но при этом они стоят несколько дороже. Эти ячейки имеют вид квадратов со скошенными углами или многоугольников, что объясняется формой монокристаллической кремниевой заготовки. Поликристаллические тонкие пленки также весьма перспективны для солнечной энергетики. Чрезвычайно высока способность к погло-щению солнечного излучения у диселенида меди и индия (CuInSe2) – 99 % света поглощается в первом микроне этого материала (ширина за-прещенной зоны – 1, 0 эВ). Сервис онлайн-записи на собственном Telegram-боте
Попробуйте сервис онлайн-записи VisitTime на основе вашего собственного Telegram-бота:— Разгрузит мастера, специалиста или компанию; — Позволит гибко управлять расписанием и загрузкой; — Разошлет оповещения о новых услугах или акциях; — Позволит принять оплату на карту/кошелек/счет; — Позволит записываться на групповые и персональные посещения; — Поможет получить от клиента отзывы о визите к вам; — Включает в себя сервис чаевых. Для новых пользователей первый месяц бесплатно. Зарегистрироваться в сервисе Среди солнечных элементов особое место занимают батареи, ис-пользующие органические материалы. Коэффициент полезного дейстия солнечных элементов на основе диоксида титана, покрытого органическим красителем, весьма высок – ~11 %. Теллурид кадмия (CdTe) – еще один перспективный материал для фотовольтаики. У него почти идеальная ширина запрещенной зоны (1, 44 эВ) и очень высокая способность к поглощению излучения. Плен-ки CdTe достаточно дешевы в изготовлении. Кроме того, технологиче-ски несложно получать разнообразные сплавы CdTe c Zn, Hg и другими элементами для создания слоев с заданными свойствами. Самый первый в мире фотоэлемент появился в 1883 году в лаборатории Чарьза Фриттса. Он был изготовлен из селена, покрытого золотом. Увы, но такой набор материалов показал невысокие результаты — около1%КПД. Революция в использовании фотоэлементов произошла тогда, когда в недрах лаборатории компании «Bell Telephone» был создан первый элемент на кремнии. Лекция №3. Использование солнца как источника электрической энергии (продолжение) Содержание лекции: устройство, принцип работы и характеристика фотоэлемента, термодинамическое преобразование солнечной энергии в электрическую, солнечные электростанции. Цель лекции: изучить устройства и энергетические возможности фотоэлементов, солнечных электростанции на основе термодинамического преобразования
|