Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Движущая сила массообменных процессов






 

Движущей силой массообменных процессов является разность между рабочей и равновесной концентрациями или наоборот. Это зависит от того, которая из указанных концентраций больше.

На рис. 1.4 приведены возможные варианты выражения движущей силы массообменного процесса при одном и том же направлении перехода распределяемого вещества.

При этом движущую силу можно выражать либо через концентрации распределяемого вещества в фазе G, либо L. В этой связи уравнения массопередачи, записанные по фазам, имеют вид

 

,

 

. (1.7)

 

Индексы у коэффициента скорости процесса показывают, какие концентрации приняты для выражения движущей силы. В общем случае и , но всегда выполняется равенство

. (1.8)

 

На рис. 1.4. показано, как движущая сила меняется с изменением рабочих концентраций. В этой связи для всего процесса массообмена, протекающего в пределах изменения концентраций от начальных до конечных, должна быть определена средняя движущая сила по газовой фазе или жидкой – .

 

 

а) б)

Рис. 1.4. Движущая сила массообменного процесса для участка аппарата:

а) по газовой фазе; б) по жидкой фазе

 

С учетом средней движущей силы процесса основное уравнение массопередачи для всей поверхности контакта фаз может быть записано в виде

, (1.9)

. (1.10)

При определении движущей силы возможны два случая:

– зависимость между равновесными концентрациями не линейна и определяется функциональной зависимостью самого общего вида типа ;

– зависимость между равновесными концентрациями линейная –
( – представляет собой постоянную величину).

Определим среднюю движущую силу по фазе G для случая перехода распределяемого компонента из газовой в жидкую фазу. Для элемента поверхности имеем

; .

 

Из сопоставления предыдущих равенств получим

 

 

для элементарной поверхности фазового контакта имеем

 

.

 

После интегрирования в пределах 0F и получим

 

. (1.11)

Изменим границы интегрирования с целью исключения отрицательного знака перед интегралом и вставим равенство для :

 

. (1.12)

При выражении движущей силы для жидкой фазы получим аналогичное выражение:

. (1.13)

При сравнении уравнений (1.9) и (1.10) с уравнениями (1.12) и (1.13) составим выражения для средних движущих сил по газовой и жидкой фазам:

, (1.14)

 

. (1.15)

 

Интегралы, стоящие в правой части равенств (1.14) и (1.15), называют числами единиц переноса – сокращенно ЧЕП.

Отсюда выражение для ЧЕП в газовой фазе имеет

,

а выражение для ЧЕП в жидкой фазе:

.

Число единиц переноса, как следует из уравнений (1.14) и (1.15), можно определять по средней движущей силе процесса:

,

.

Физический смысл ЧЕП состоит в том, что эта величина характеризует изменение рабочей концентрации фазы, приходящееся на единицу движущей силы.

Эти соотношения справедливы для всех случаев, когда между рабочими и равновесными концентрациями имеют место линейные и нелинейные зависимости.

Числа единиц переноса выражаются интегралами, которые не могут быть решены аналитически, так как вид функции или в каждом конкретном случае различен. В связи с этим число единиц переноса и определяют методом графического или численного интегрирования.

При графическом интегрировании (рис. 1.5) задаются рядом значений , промежуточных между величинами и .

 
 

Рис. 1.5. К расчету числа единиц переноса методом графического
интегрирования

 

Строят кривую зависимости от . Измеряют площадь, ограниченную крайними ординатами, соответствующими и , и осью абсцисс (площадь , заштрихованная на рисунке). После этого находят величину искомого интеграла с учетом масштабов и осей ординат и абсцисс:

.

Аналогично, пользуясь графиком зависимости от , определяют величину .

Для случаев, когда между равновесными концентрациями существует прямолинейная зависимость, при определении средней движущей силы используются более простые зависимости, вывод которых приведен в учебной литературе. Например, при расположении рабочей линии процесса выше линии равновесной для газовой и жидкой фаз зависимости для расчета средней движущей силы имеют вид

 

;

 

 

а для вычисления ЧЕП:

 

;

 

,

 

где и – тангенсы угла наклона рабочих и равновесных линий изменения концентраций.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.