Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Звук. Эффект Доплера




Упругие волны, вызывающие у человека слуховые ощущения, называются звуковыми волнами или просто звуком.

Человеческое ухо способно воспринимать упругие механические волны с частотой ν от 16Гц до 20000Гц. Упругие волны с частотой ν<16Гц называют инфразвуком, а волны с частотой ν>20000Гц – ультразвуком.

В газах и жидкостях звуковые волны распространяются в виде продольных волн сжатия и разряжения. Сжатия и разряжения среды, возникающее вследствие колебаний источника звука (струны, ножек камертона, голосовых связок и т.д.) , через некоторое время достигают человеческого уха и, заставляя барабанную перепонку уха совершать вынужденные колебания, вызывают у человека определённые слуховые ощущения.

В вакууме звуковые волны распространяться не могут, так как там нечему колебаться.

Звук в газах. Скорость звука зависит от температуры среды. С увеличением температуры она возрастает, а с уменьшением убывает.

Скорость звука не зависит от плотности газа, в котором этот звук распространяется. Однако она зависит от массы его молекул. Чем больше масса молекул газа, тем меньше скорость звука в нём. Так, при температуре 0ºС скорость звука в водороде 1284м/с, а в углекислом газе – 259 м/с.

Звук в жидкостях. Скорость звука в жидкостях, как правило, больше скорости звука в газах. В жидкостях скорость звука, как правило, уменьшается с ростом температуры. Вода является исключением из этого правила. В ней скорость звука увеличивается с ростом температуры и достигает максимума при температуре 74 ºС, а при дальнейшем увеличении температуры она уменьшается.

Звук в твёрдых телах. Скорость звука в твёрдых телах ещё больше, чем в жидкостях. Только здесь следует учитывать, что в твёрдых телах могут распространяться как продольные, так и поперечные волны. Скорость этих волн, как мы знаем, различна. Например, в стали поперечные волны распространяются со скоростью 3300м/с, а продольные –со скоростью 6100 м/с. Помимо слышимых звуков, в земной коре распространяются и инфразвуковые волны, которые человеческое ухо уже не воспринимает. Такие волны могут возникать при землетрясениях, при извержении вулканов, взрывах атомных бомб работе двигателей реактивных самолётов и т.д.

Ультразвук тоже не воспринимается человеческим ухом. Однако его способны излучать и улавливать некоторые животные, например летучие мыши и дельфины. В технике для получения ультразвука используют специальные устройства.

Слуховые ощущения, которые у нас вызывают различные звуки, во многом зависят от амплитуды звуковой волны и её частоты.

Амплитуда звуковой волны определяет громкость звука: чем больше амплитуда колебаний в звуковой волне, тем громче звук. Так, когда колебания звучащего камертона затухают, вместе с амплитудой уменьшается и громкость звука. И наоборот, ударив по камертону сильнее и тем самым увеличив амплитуду его колебаний, мы вызовем и более громкий звук.



Высота звука определяется его частотой: чем больше частота колебаний в звуковой волне, тем выше звук; колебаниям небольшой частоты соответствуют низкие звуки.

Так, например, шмель машет в полёте своими крылышками с меньшей частотой, чем комар. Поэтому полёт шмеля сопровождается низким звуком (жужжанием), а полёт комара – высоким (писком).

Звуковую волну определённой частоты иначе называют тоном. Поэтому о высоте звука часто говорят как о высоте тона. Если этот процесс гармонический, то тон называется простым или чистым. Основной тон с «примесью» нескольких колебаний других частот образует музыкальный звук или сложный тон, который соответствует ангармоническому колебанию. Простой тон издаёт, например, камертон, сложный тон создаётся музыкальными инструментами, аппаратом речи (гласные звуки) и т.п. Набор частот с указанием их относительной интенсивности (амплитуды) называется акустическим спектром.

При обычной речи в мужском голосе встречаются колебания частотой от 100 до 7000Гц, а в женском – от 200 до 9000Гц. Наиболее высокочастотные колебания входят в состав звука согласной «с». Чтобы обеспечить понятность речи, достаточно воспроизвести область частот от300 до 2000Гц. Такую область частот воспроизводит телефон.

Шумом называют звук, отличающийся, неповторяющейся временной зависимостью. К шуму относятся звуки от вибрации машин, аплодисменты, шум пламени горелки, шорох, скрип, согласные звуки речи и т.п. Шум можно рассматривать как сочетание беспорядочно изменяющихся сложных тонов.



Звуковой удар – это кратковременное звуковое воздействие: хлопок, взрыв и т.п.

Увеличение длительности звука, вызванное его отражением от различных препятствий, называется реверберацией. Отражением звука объясняется и эхо. Эхо – это звуковые волны, отражённые от какого-либо препятствия (зданий, холмов, леса и т.п.) и возвратившиеся снова к источнику. Если до нас доходят звуковые волны, последовательно отразившиеся от нескольких препятствий и разделённые интервалом времени t ≥50-60мс, то возникает многократное эхо. Некоторые из таких эхо приобрели всемирную известность. Так, например, скалы, раскинутые в форме круга возле Адерсбаха в Чехословакии, в опредёлённом месте троекратно повторяют семь слогов. А в замке Вудсток в Англии эхо отчётливо повторяет 17 слогов.

Изменение частоты волн, регистрируемых приемником, которое происходит вследствие движения источника этих волн и приемника называют эффектом Доплера.

Мы все когда-либо наблюдали физический эффект, связанный с изменением гудка приближающегося и удаляющегося поезда. В первом случае он выше, а во втором ниже, чем у неподвижно стоящего поезда.

Это эффект легко объяснить. Тон звука, слышимый нами, зависит от частоты звуковой волны, доходящей до уха. Если источник звука движется нам навстречу, то гребень каждой следующей волны приходит чуть быстрее, так как был испущен уже ближе к нам. Источник, двигаясь к приёмнику как бы сжимает пружину (рис. ). Волны воспринимаются ухом, как более частые, то есть звук кажется выше. При удалении источника звука, каждая следующая волна испускается чуть дальше и доходит до нас чуть позднее предыдущей (пружина распрямляется), а мы ощущаем более низкий звук.

То же самое происходит, если движется не источник звука, а мы сами. Если мы набегаем на волну, её гребни пересекаем чаще, и звук кажется выше. Если убегаем от волны - наоборот. То есть не важно - движется источник или приёмник звука. Для наблюдения эффекта Доплера главное - их движение относительно друг друга. Этот эффект наблюдается не только для звука, а и для волн любой частоты - световых и даже радиоактивного излучения.

Благодаря эффекту Доплера, астрономы установили, что вселенная расширяется - звёзды разбегаются друг от друга. С его помощью определяются параметры движения планет и космических аппаратов. Эффект Доплера лежит в основе радаров, с помощью которых гаишники определяют скорость автомобиля. Медики используют этот эффект для того, чтобы с помощью ультразвукового прибора отличить вены от артерий при проведении инъекций.

 

 


mylektsii.ru - Мои Лекции - 2015-2019 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал