Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Нерегрессивные суждения






Гарри недавно поступил в Государственный арбузолитейный университет. Средний балл всех студентов этого университета (СБ) равен 2, 8. Гарри — новичок и еще не сдавал экзаменов. Хотя у вас нет никакой конкретной информации о Гарри, как вы думаете, каков будет его средний балл? Прекратите чтение и попытайтесь угадать его средний балл.

После первых экзаменов в середине семестра Гарри получил средний балл 3, 8. При наличии этой новой информации как вы теперь оцените СБ Гарри, который он получит в конце учебного года? Большинство людей на первый вопрос сразу отвечает 2, 8, т. е. называют средний балл всех студентов арбузолитейного университета. Это правильный ответ, поскольку, не имея другой информации, лучше всего заключить, что средний балл любого из студентов этого университета близок к общему среднему баллу. На второй вопрос большинство людей отвечает 3, 8. К сожалению, это не самый лучший ответ. Хотя и верно, что человек, получающий высокие оценки на экзаменах в середине семестра, как правило, получает высокие оценки на экзаменах за весь семестр, все же эти оценки не совпадают в точности. Обычно человек, получивший очень высокий по какой-либо шкале результат, в следующий раз получает результаты ближе к средним. Следовательно, средний балл Гарри в конце учебного года, скорее всего, будет меньше, чем 3, 8, и больше, чем 2, 8. (Точный прогноз среднего балла можно вычислить математически, но эти расчеты выходят за рамки данной книги.) Эта идея сложна для понимания, поскольку большинство людей находит, что она противоречит интуиции, и это действительно так.

Полезно рассмотреть пример из области спорта. Вспомните своих любимых спортсменов. Хотя они иногда выступают совершенно блестяще, чаще всего их результат близок к среднему. В конце концов, невозможно всегда сбивать все кегли или выбивать 1000 очков. Любителям спорта известно явление, которое носит название «синдром второго года». После выдающихся успехов в течение первого года выступлений на следующий год звезда обычно начинает показывать результаты, которые ближе к среднему уровню. Еще один пример, который может помочь прояснить эту концепцию, — это часто используемый пример о росте отцов и сыновей. Как правило, сыновья отцов очень высокого роста имеют рост ближе к среднему (хотя все же выше среднего). Это явление носит название регрессии к среднему значению. (Среднее значение вычисляется путем сложения всех интересующих вас значений и деления на число этих значений.) (333:)

Выше в этой главе я говорила о законах случая. Никто не может точно предсказать рост конкретного человека. Но в целом — т.е. если обследовать очень много отцов высокого роста, то окажется, что у большинства из их сыновей рост регрессирует к среднему значению. Таким образом, как и было сказано выше, знание законов вероятности помогает нам лучше прогнозировать, но точные прогнозы будут получаться не всегда. Важно понимать эту концепцию, имея дело с вероятностными событиями.

Канеман и Тверски (Kahneman & Tversky, 1973) изучали последствия, возникающие вследствие того, что специалисты не понимают явления регрессии к среднему. Израильские летные инструкторы хвалили курсантов, когда они успешно выполняли сложные фигуры пилотажа и маневры, и критиковали плохие полеты. С учетом того, что вы только что узнали о регрессии к среднему значению, понятно, что должно произойти после того, как пилот отлично справился с заданием? Последующие полеты, вероятно, окажутся ближе к среднему уровню, потому что класс пилотажа регрессировал к среднему. И наоборот, чего следует ожидать после очень плохого полета? Опять-таки, последующие должны быть ближе к среднему уровню — в данном случае это означает, что они станут лучше, хотя могут все равно остаться ниже среднего уровня. Инструкторы не понимали явления регрессии к среднему значению, поэтому пришли к неверному выводу о том, что похвалы приводят к ухудшению результатов, а критика — к улучшению.

Давайте рассмотрим еще один пример регрессии к среднему значению. Это явление носит повсеместный характер, но очень немногие люди знают о нем. Предположим, что вы узнали о группе самопомощи для людей, дети которых очень плохо себя ведут. (Такие группы действительно существуют.) Большинство родителей обращается в такие группы тогда, когда их дети ведут себя особенно плохо. После нескольких недель посещения группы многие родители сообщают, что поведение их ребенка стало лучше. Можно ли сделать вывод, что занятия в группе помогли родителям научиться управлять поведением своих детей? Вспомните о регрессии к среднему значению! Если родители поступили в группу, когда поведение их ребенка было особенно плохим, то что бы они ни делали — даже если бы они не делали ничего, — все равно поведение ребенка, скорее всего, должно регрессировать к среднему по условной шкале поведения уровню. Мы можем прогнозировать не ангельское или хотя бы нормальное, т. е. среднее поведение, а только некоторое улучшение или изменение поведения в сторону среднего уровня. Поскольку это статистический прогноз, иногда он может оказаться неверным, но в среднем (в достаточно протяженном интервале времени) мы будем правы. Поэтому нельзя сделать никаких выводов об эффективности занятий в группе самопомощи, если не провести эксперимент того типа, который был описан в главе 6. Нужно будет случайным образом распределить детей и семьи по группам самопомощи и контрольным группам, а затем определить, будут ли дети из групп самопомощи вести себя значительно лучше, чем дети из контрольной группы, на которых не оказывали никакого специального воздействия. Для того чтобы заключить, что такие группы помогают улучшить поведение ребенка, мы должны иметь возможность случайным образом распределить семьи по группам. Если вы начнете искать в жизни случаи регрессии к среднему значению, то удивитесь, какое количество событий можно объяснить именно «движением к среднему значению», а не какими-либо другими причинами. (334:)

Риск

Если мы проанализируем данные, полученные в сотнях населенных пунктов, расположенных в США или во всем мире, то обнаружим, что в некоторых районах имеет место исключительно высокий уровень заболеваемости некоторыми видами рака, врожденных уродств, опухолей мозга и других заболеваний, а также необъяснимых смертей. Как можно выяснить, существует ли связь между высоким уровнем заболеваемости и наличием токсических веществ (например, пестицидов) в воде и магнитными полями от линий электропередач или это явление носит случайный характер?

Понятие частотности, т.е. того, насколько часто повторяется событие, является неотъемлемой частью определения вероятности. Если событие происходит часто, то его появление имеет высокую вероятность. Для определения степени риска, связанного с катастрофическими событиями, необходимо сначала определить их частоту. Поскольку, как правило, катастрофические события происходят редко (например, авиакатастрофы или утечки радиации с атомных электростанций), а в некоторых случаях их последствия проявляются лишь через много лет (например, раковые заболевания, вызванные загрязнением окружающей среды), то определение их частотности — очень трудная задача. Чтобы понять, как люди выносят свои суждения о степени риска, необходимо понимать, как они определяют частотность связанных с риском событий обыденной жизни. Ряд исследователей (Lichtenstein et al., 1978) заинтересовался тем, как люди оценивают частотность событий, вызывающих летальный исход. Они изучили этот вопрос, предложив студентам колледжа и членам Лиги женщин-избирателей несколько пар возможных причин смерти и попросив их выбрать, какая из причин более вероятна. Чтобы понять суть этого эксперимента и полученных в нем результатов, давайте попробуем сами ответить на несколько вопросов. Для приведенных ниже пар событий укажите, какое из них является более вероятной причиной смерти, а затем оцените, во сколько раз вероятнее выбранная вами причина приводит к смерти, чем второе событие пары. (Реальные частотности упоминающихся событий приводятся в конце этого раздела.)

A. Астма или торнадо
Б. Замерзание или сифилис
В. Диабет или самоубийство
Г. Болезни сердца или рак легких
Д. Наводнение или убийство
Е. Сифилис или диабет
Ж. Астма или ботулизм
З. Отравление витаминами или удар молнии
И. Туберкулез или убийство
К. Все несчастные случаи или рак желудка

Исследователи обнаружили, что в целом люди тем точнее оценивают вероятности причин смерти, чем больше реальные различия между частотностями событий, однако они делают большое количество ошибок при оценке частотности различных событий по отношению друг к другу. Субъекты описанного эксперимента переоценивали частотность событий, которые происходят очень редко, и недооценивали частотность событий, которые происходят очень часто. Кроме того, частотность (335:) событий со смертельным исходом, которые широко освещаются в средствах массовой информации (например, авиакатастрофы, наводнения, убийства, торнадо, ботулизм), обычно переоценивается, в то время как менее драматичные, молчаливые убийцы (например, диабет, инсульт, астма, туберкулез) недооцениваются. Создается впечатление, что широко освещаемые события легче приходят на ум, и это приводит к необъективной оценке их частотности. Наше восприятие риска искажается под влиянием событий, которые хорошо запоминаются, таких как стихийные бедствия или несчастные случаи, поданные в новостях как сенсации, например, большая авиакатастрофа или заболевание ботулизмом из-за употребления непрожаренных гамбургеров. В главе 2 я говорила о том, что память является неотъемлемой частью всех мыслительных процессов. Наши воспоминания оказывают решающее влияние на характер нашего мышления. Из приводимой ниже цитаты видно, насколько важно при оценке мыслительных процессов иметь в виду то, что память может быть необъективной.

.Наше общество очень часто выносит суждения об опасной деятельности при отсутствии адекватных статистических данных об этой деятельности, — например, об исследованиях в области генной инженерии или захоронении радиоактивных отходов Мы подозреваем, что необъективность, обнаруженная в этих суждениях (переоценка редких событий, недооценка частых событий и искажения, возникающие под влиянием драматичности или яркости производимого впечатления), на самом деле существует и даже может усиливаться в таких ситуациях (Lichtenstein et al, 1978, р 577)

Нет ничего удивительного в том, что мы склонны переоценивать вероятность событий, которые широко освещаются в средствах массовой информации. Принимая решения, мы полагаемся на доступную нам информацию и обычно не осознаем, что эта информация тенденциозна или сенсационна (Fischoff, 1993). Об убийствах рассказывают в каждом выпуске новостей и пишут в каждой газете; о смертях, наступивших от болезней сердца, редко упоминают в этом контексте. Неудивительно, что многие люди считают, что вероятность быть убитыми для них больше, чем вероятность умереть от сердечного приступа (эта оценка, к сожалению, верна для подростков и молодежи из больших американских городов, хотя и неверна почти для всех остальных людей).






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.