Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Как продвинуть сайт на первые места?
    Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
    Ускорение продвижения
    Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
    Начать продвижение сайта
  • Диференціальні операції в скалярних і векторних полях






    Скалярні і векторні поля

     

    Завдання № 1. Визначити швидкість і характер зміни скалярного поля в точці за напрямом вектора нормалі до поверхні (нормаль утворює гострий кут з додатнім напрямом oсі ).

     

    , : , .

     

    Розв’язання.

    1) Знаходимо одиничний вектор нормалі в точці до поверхні . Поверхня визначається рівнянням , – її нормальний вектор, тоді одиничний вектор нормалі в точці визначається так:

    .

    Знайдемо частинні похідні функції та їх значення в точці :

    , , .

     

    Тоді за формулою (4)

    .

    Знайдемо довжину :

    .

    Отже, одиничний вектор нормалі в точці до поверхні з урахуванням того, що нормаль утворює гострий кут з додатнім напрямом oсі :

    .

     

    2) Похідна за напрямом характеризує швидкість зміни функції за напрямом вектора в точці . Зайдемо похідну скалярного поля за напрямом вектора в точці за формулою:

    .

    Знайдемо частинні похідні функції та їх значення в точці :

    , ,

    .

    Тоді за формулою (3) з урахуванням того, що , будемо мати:

    .

    Оскільки , то скалярне поле поле в напрямі вектора зростає.

    Завдання № 1. Знайти ротор і дивергенцію векторного поля в точці

    ,

    Розв’язання.

    Маємо з умови

    Знайдемо частинні похідні:

    Знайдемо дивергенцію векторного поля за формулою Отже

    Ротор векторного поля обчислимо за формулою

    . Отже,

     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.