Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Особенности строения и свойств алленов






В аллене центральный атом углерода находится в третьем валентном состоянии, то есть его атомные орбитали sp- гибридизованы. Все три атома углерода находятся на одной прямой, а плоскости p-связей взаимно перпендикулярны. Длина C=C -связи меньше, чем в алкенах, и это объясняется меньшей протяжённостью sp- гибридной орбитали центрального атома углерода, за счёт которой образуется эта связь.

Благодаря такому строению для замещённых алленов характерна стереоизомерия. Например, приведённые ниже структуры являются зеркальными отображениями друг друга:

 

 

В молекулах таких алленов нет центров хиральности. Их асимметрия определяется характером расположения заместителей относительно оси C—C—C, называемой осью хиральности.

Из-за образования одним атомом углерода двух p-связей в молекулах алленов возникает дополнительное напряжение, делающее их менее стабильными по сравнению с другими диеновыми углеводородами. По этой причине реакции, являющиеся общими для углеводородов с двойными связями, для алленов протекают несколько легче.

Гидратация приводит к получению кетонов:

 

 

Здесь наблюдается быстрая изомеризация непредельного спирта (енола) в ацетон.

Изомеризация

Под действием оснований аллены изомеризуются в ацетиленовые углеводороды — более устойчивые соединения:

 

 

 

4.3.3. Строение и свойства сопряжённых диенов

Электронное строение сопряжённых диенов является примером неполярного p-p-сопряжения, которое было рассмотрено ранее (гл. 1.4). В связи с этим сопряжённый фрагмент в молекулах этих углеводородов планарен, двойные связи имеют бó льшую длину, чем углерод-углеродная связь в этилене, а связь между вторым и третьим атомами углерода в этом сопряжённом фрагменте, напротив, короче обычной ординарной связи:

 

Сравните с длинами связей в этилене и этане (гл. 1.2).

Кроме того, энергетический барьер вращения вокруг связи С2–С3 в бутадиене-1, 3 (»21 кДж/моль) значительно больше, чем в этане (»12.6 кДж/моль). Поэтому бутадиен-1, 3 по сравнению с этаном может дольше находиться в форме энергетически выгодных конформеров.

Химические реакции сопряжённых диенов, как правило, затрагивают общую систему p-связей. Поэтому при протекании реакций, являющихся общими для непредельных углеводородов, необходимо учитывать некоторые особенности, обусловленные наличием сопряжённого фрагмента.

Гидрирование

Присоединение водорода на катализаторах (гл. 4.1.4.4) приводит к получению насыщенных углеводородов (гидрируются сразу две двойных связи), при этом выделяется значительно меньше тепловой энергии в расчёте на одну связь, чем при гидрировании этилена, что говорит о низкой потенциальной энергии таких молекул и, соответственно, их стабильности вследствие сопряжения.

Восстановление атомарным водородом (водородом в момент выделения), то есть при использовании для восстановления металлического натрия в спирте или цинка в серной кислоте, протекает более избирательно. Взаимодействие диена здесь происходит не с атомом водорода, как это иногда представляют, а с активным металлом:

 

 

 

Аналогично происходит восстановление сопряжённых триенов. Так, при взаимодействии гексатриена-1, 3, 5 с цинком в серной кислоте первоначально образуется сопряжённый диен, который затем гидрируется до этиленового углеводорода:

 

Н2C=CH-CН=СН-CH=CН2 Н3C-CH=CН-СН=СН-CH3 ®

Н3C-CH2-CН=СН-CH2-CН3

Электрофильное присоединение

Направление присоединения электрофилов к сопряжённым диенам имеет некоторые особенности. В качестве примера рассмотрим взаимодействие бутадиена-1, 3 с бромоводородом. Реакция начинается с атаки протоном одной из связей субстрата и после p-комплекса образуется s-комплекс, представляющий собой карбокатион аллильного типа (от назв. соответствующего радикала «аллил» — гл. 4.2.1), стабилизированный р- p-сопряжением:

Н2C=CН-СН=СН2 + Н+ ® Н3C-+CH-СН=СН2

 

Однако вследствие сопряжения возможна и другая граничная структура такого катиона с переносом положительного заряда:

 

[ Н3C-+CH-СН=СН2 «Н3C-CH=СН-+СН2 ]

 

Поскольку в карбокатионе положительный заряд распределён главным образом между двумя атомами углерода, то карбокатион может атаковаться бромид-ионом по двум направлениям:

 

 

Первое направление (а) именуют 1, 2-присоединение, так как реагент (бромоводород) присоединяется к первому и второму атомам в сопряжённом фрагменте диенового углеводорода; второе направление (b) называют 1, 4-присоединение — в этом случае реагент (бромоводород) присоединяется к первому и четвёртому атомам в сопряжённом фрагменте.

В общем случае реакция может идти как по направлению а, так и по направлению b. Однако 1, 2-присоединение протекает легче, с большей скоростью, но при этом образующийся продукт малоустойчив и может распадаться на исходные вещества. В противоположность этому 1, 4-присоединение протекает медленнее, но продукт реакции термодинамически более стабилен.

На энергетической диаграмме показана потенциальная энергия субстрата при превращении по пути а и по пути b (см. рис. 4.1).

Таким образом, при низких температурах, когда равновесие ещё не достигнуто, образуется преимущественно продукт 1, 2-присоединения (его называют кинетически контролируемым), а при обычных или повышенных температурах, то есть при установлении равновесия (чем выше температура, тем быстрее устанавливается равновесие) — продукт 1, 4-присоединения (его называют термодинамически контролируемым).

Образовавшийся 1, 2-продукт постепенно, через стадию образования карбокатиона, превращается в более устойчивый 1, 4-продукт.

Аналогично присоединению бромоводорода преимущественное направление 1, 4-присоединения характерно и для других реакций электрофильного присоединения.

При использовании избытка реагента реакция присоединения может идти дальше до полного насыщения кратных связей.

 

Энергия

Рис. 4.1. Энергетическая диаграмма реакции бутадиена-1, 3 с бромоводородом

 

Образование стабильных аллильных катионов при протонировании сопряжённых диенов даёт возможность протекания реакций алкилирования непредельных углеводородов (алкенов, алкадиенов) и их производных, приводящих к наращиванию углеродной цепи. Этот процесс важен в биосинтезе терпенов и стероидов (о терпенах и стероидах — гл. 8.5, 8.7). Механизм реакции можно рассматривать как типичное электрофильное присоединение:

 

 

Радикальное присоединение

Присоединение галогенов, галогеноводородов и других реагентов в условиях гомолитического разрыва ковалентной связи, а значит, по механизму AdR, также сопровождается преимущественным образованием продукта 1, 4-присоединения. Например:

R-CН=CН-СН=СН2 + Br2 R-CHBr-СН=СН-CH2Br

 

Избыток брома приводит к полному насыщению кратных связей.

Диеновый синтез

Реакции диенового синтеза часто называют реакциями Дильса*–Альдера* по имени учёных, внёсших существенный вклад в их изучение. Эти реакции представляют также 1, 4-присоединение к диеновым углеводородам с образованием циклических систем. В роли реагента здесь выступает другой непредельный углеводород или, что чаще бывает, его функциональное производное с электроноакцепторными группами. Такие реагенты, взаимодействующие с диенами, в этой реакции называются диенофилами.

Наиболее вероятным здесь является синхронный механизм. Реакция протекает через образование циклического переходного состояния, в котором происходит частичное перекрывание р -орбиталей диена и диенофила:

 

диен диенофил

 

 

Удаётся осуществить диеновый синтез и с этиленом, но при повышенных температуре и давлении:

 

 

Реакция Дильса–Альдера применяется на первых стадиях синтеза морфина (гл. 12.6), разработанного М. Гейтсом:

 

 

За открытие и развитие метода диенового синтеза К. Альдер и О. Дильс были удостоены Нобелевской премии по химии в 1950 году.

Реакция Дильса–Альдера может использоваться для характеристики диенов-1, 3.

Реакции полимеризации также протекают преимущественно по направлению 1, 4-присоединения. При этом образуются ненасыщенные полимерные углеводороды, обладающие многими ценными качествами, в том числе эластичностью. При полимеризации бутадиена-1, 3 образуется эластичный материал, по многим характеристикам близкий к натуральному каучуку; он был назван бутадиеновым синтетическим каучуком. Возможно образование как цис-, так и транс- структур:

 

цис-
транс-

 

Полимеризация изопрена также может приводить к получению разных стереоизомерных продуктов. В процессе полимеризации по радикальному механизму образуются полимеры с нерегулярной структурой. Однако в присутствии катализаторов Циглера*–Натта * (алюминий- и титанорганические соединения) образуются почти исключительно продукты цис- 1, 4-присоединения:

 

 

Механизм полимеризации здесь карбанионный (гл. 4.1.4.2), инициаторами процесса являются карбанионы R ¯.

Такой полимер почти идентичен натуральному каучуку. Высокая его эластичность определяется цис- конфигурацией. В природе также встречается транс- полиизопрен, называемый гуттаперчей, который имеет худшие механические свойства, в частности, не проявляет высоких эластических свойств.

Дж. Натта и К. Циглер за открытия в области химии и технологии полимеров в 1963 году удостоены Нобелевской премии.

 

 

4.3.4. Особенности химического поведения диенов
с изолированными двойными связями

В молекулах диеновых (и полиеновых) углеводородов с изолированными двойными связями отсутствует сколько-нибудь существенное взаимодействие между кратными связями (по причине их разделения друг от друга насыщенными атомами углерода). Поэтому в преобладающем большинстве реакций эти углеводороды ведут себя как этиленовые.

Однако особенности поведения могут проявляться в реакциях радикального замещения, и прежде всего для тех из них, в молекулах которых двойные связи разделены только одним тетраэдрическим атомом углерода. Для таких углеводородов легче протекают SR -реакции вследствие более полной мезомерной стабилизации промежуточного радикала. Например, для пентадиена-1, 4:

CH2=CH-CH2-CH=CH2 + Cl × ® CH2=CH- Ċ H-CH=CH2 + HCl

 

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.