Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






ЯМР-томографія






 

В основі ядерно-магніто-резонансної томографії (ЯМР-томографії) лежить явище ядерного магнітного резонансу (ЯМР), яке було описане в розділі 9. Як виявляється, систе­ма протонів ядра, які знаходяться у зовнішному магнітному полі з індукцією В, може резонансно поглинати енергію високочастотного електромагнітного поля з частотою np, що лежить в радіодіапазоні (частіше за все в НВЧ-діапазоні).

За умовою резонансу (9.26) резонансна частота np прямопропорційна індукції В магнітного поля і може змінюватися в досить широких межах. Це явище дає дуже цінну інформацію відносно просторового розподілу ядер в певному об’ємі, що знаходиться у магнітному полі.

На мал. 10.21 наведена блок-схема магнітно-резо­нансного томографа.

Мал. 10.21. Блок-схема ЯМР-томографа: 1 – досліджуваний об’єкт, 2 – котушка (соленоїд), 3 – магніт, 4 – імпульсний генератор,
5 – радіочастотний передавач, 6 – приймач, 7 – комп’ютер.

Спрощений принцип роботи ЯМР-томографа можна пояснити так: на біооб’єкт (1), вміщений в котушку (2) і в магнітне поле (3), діють імпульсами від генератора (4). Ці імпульси через радіочастотний передавач(5) діють на біооб’єкт, в якому внаслідок явища магнітного резонансу протони відгукуються відповідним сигналом, поглинаючи енергію радіочастотного електромагнітного поля. Цей сигнал протонного магнітного резонансу (ПМР), який є частинним випадком ЯМР, вимірюється приймачем (6) і подається на комп’ютер (7), який обробляє сигнал і одно­часно визначає режим роботи генератора радіо­імпульсів (4).

Важливими задачами, пов’язаними з практичною реалізацією метода ЯМР-томографії є 1) створення необхід­ної конфігурації магнітного поля, 2) відновлення (візуалі­зація) зображення досліджуваного біооб’єкта.

Для розв’язку першої задачі досліджуваний об’єкт вміщується в магнітне поле, індукція якого лінійно змінюється в якомусь (одному, двох, а частіше за все – в трьох взаємо перпендикулярних напрямках. В такому випадку говорять про лінійний градієнт магнітного поля, для якого зміна індукції В з координатою х відбувається за законом

В (х) = В 0 + ах, (10.43)

де а = – стала величина, яка й характеризує градієнт магнітного поля, В 0 – певне значення індукції, що досягається всередині досліджуваного об’єму (мал. 10.22). Вертикальні лінії умовно зображують витки котушки, через яку пропускається струм, що створює магнітне поле.

Рис 10.22. Конфігурація магнітного поля в методі ЯМР-томографії.

Як відомо (див. розділ 4), добуток сили струму І на кількість витків n, що припадають на одиницю довжини котушки, визначає індукцію В на осі такого соленоїда
(В ~ І× n). Зрозуміло, що можна накрутити металевий дріт таким чином, щоб кількість витків n і, відповідно, індукція B змінювалися лінійно вздовж осі х, забезпечуючи тим самим виконання залежності (10.43). Оскільки магнітне поле змінюється в напрямку х, то на підставі умови резонансу (9.26) буде в цьому напрямку змінюватися і резонансна частота np. Далі, враховуючи той факт, що площа під кривою поглинання в спектрі ПМР визначає кількість протонів, що входять до складу ядер певних хімічних елементів, можна отримати просторовий розподіл густини протонів (тобто атомних ядер) вздовж осі х. В такий спосіб отримується одновимірна проекція біооб’єкта.

Розв’язання другої задачі – відновлення об’ємного зобра­ження – стало можливим завдяки роботам П. Лаутер­бурга та інших вчених, які використали для цього так званий метод відновлення за проекціями. Суть цього методу полягає в отриманні багатьох одновимірних проекцій досліджуваного об’єкта. Це досягається зміною напрямку градієнта індукції магнітного поля за рахунок зміни сили струму в трьох взаємо перпендикулярних котушках (соле­но­їдах). На відміну від рентгенівської томографії такий метод дозволяє виключити механічні переміщення дослід­жу­ваного біооб’єкта або апаратурних частин томографа.

Ще одна особливість метода комп’ютерної томографії полягає у можливості отримання інформації (зображень) від тонких шарів тривимірного біооб’єкта. В методі ЯМР-томо­графії це досягається двома способами:

1) за рахунок використання спеціальної математичної обробки зображень (зокрема, так званого перетворення Родона і тривимірних Фур’є-перетворень).

2) за рахунок вибіркового (селективного) збудження тонкого шару біооб’єкта.

Слід зазначити, що на сигнал (точніше кажучи, на співвідношення сигнал-шум) в ЯМР-томограмах впливає не тільки густина протонів, але й ціла низка внутрішніх та зовнішніх факторів (температура, склад тканин, діамагнітні, парамагнітні та феромагнітні домішки, параметри апарату­ри, специфічні особливості комп’ютерних програм тощо). Змінюючи ці фактори (наприклад, параметри послідовності радіочастотних імпульсів), можна досягти суттєвого покра­щення контрасту зображення в методі ЯМР-томографії. Цей метод знаходить все ширше застосування в медицині завдя­ки таким його перевагам, як відсутність дозових наванта­жень (порівняно з рентгенівськими томографами) та можли­вість отримання контрастних зображень з метою ефектив­ності діагностики різних патологій.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.