![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Понятие множестваСтр 1 из 4Следующая ⇒
Под множеством понимается некоторая, вполне определенная совокупность объектов или элементов. Это утверждение не следует рассматривать как строгое определение. Такое “определение” напоминает данное основоположником теории множеств Георгом Кантором определение множества как “объединения в одно целое объектов, хорошо различимых нашей интуицией или мыслью". Расплывчатость, недостаточность этого определения стала понятной, когда в 1879 году итальянский логик Бурали-Форти, а немного позже выдающийся философ и логик Бертран Рассел открыли парадоксы, указывающие на внутреннюю противоречивость канторовой теории множеств. Для устранения таких противоречий и парадоксов для теории множеств были предложены аксиоматические системы. Наиболее известны системы Цермело-Френкеля-фон Неймана. Гильберта-Бернайса- Геделя и Рассела-Уайтхеда. В силу ограниченности объема книги мы не будем изучать эти системы. Поэтому, по сути, мы оставим понятие множества неопределенным и будем считать множество заданным, если его элементы однозначно определены и это не приводит к каким-либо противоречиям. Конечные множества можно описывать, перечисляя их элементы. Элементы, принадлежащие конечному множеству, условимся записывать между двумя фигурными скобками и разделять их запятыми. Например, {1, 2, 3, 4} есть множество, содержащее натуральные числа 1, 2, 3 и 4. Множество гласных можно представить как {а, о, у, э, и, ы}. Как правило, для обозначения множеств будем использовать прописные буквы. A = {Боб, Джейн, Нэнси} есть множество, состоящее из Боба, Джейн и Нэнси. Множество первых п положительных целых чисел обозначаем {1, 2, 3, 4,..., n}, где точками показано продолжение перечисления элементов. Это же обозначение можно использовать для некоторых бесконечных множеств. Например, множество положительных целых чисел можно обозначить как {1, 2, 3, 4,...}. Часто при перечислении множества используется описание характеристического свойства элементов этого множества. Например, С = {1, 8, 27,..., k3,...} описывает множество кубов всех положительных чисел, а S = {1, 4, 9,..., n2} описывает множество квадратов всех положительных чисел. Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение
В общем случае множество задается путем указания характеристического свойства, т.е. свойства, которому удовлетворяют элементы данного множества, и только они. Для задания обычно используются фигурные скобки, а внутри них приводится характеристическое свойство, описывающее множество. Таким образом. множество {x: х обладает свойством Р} предполагается содержащим только те объекты, которые имеют свойство Р. Например, {x: x — футболист, играющий за Юго-западный колледж} — множество, состоящее из всех футбольных игроков, выступающих за Юго-западный колледж. Запись {х: х — гражданин Англии} описывает множество всех граждан Англии. Способ задания множества должен быть адекватным, т.е. должен полностью определять множество. Это не представляет труда, если объекты множества перечислены. Рассмотрим, однако, множество А = {х: х — высокий студент данной группы} или В - [х: х — хороший студент данной группы}. Если различным студентам группы предложить определить множества A и B, они могут сделать это неоднозначно, выбирая в качестве элементов как множества А, так и множества В не одних и тех же людей. При рассмотрении множества С = {х: х — привлекательная (или красивая) студентка группы} выбрать элементы множества С не только трудно, но не стоит даже пытаться это сделать. Однако, если множество А = {х: х — студент данной группы, рост которого выше 180см} и В = {х: х — студент данной группы, средний балл которого не ниже 4}, то можно сказать определенно, является ли данный студент элементом А или В, так что А и В действительно есть множества. Таким образом, мы приходим к следующему формальному определению.
ОПРЕДЕЛЕНИЕ 2.1. Если а есть один из объектов множества А. мы говорим, что а есть элемент А, или а принадлежит А. Принадлежность элемента а множеству А записывается как а
Например, 3 Сервис онлайн-записи на собственном Telegram-боте
Попробуйте сервис онлайн-записи VisitTime на основе вашего собственного Telegram-бота:— Разгрузит мастера, специалиста или компанию; — Позволит гибко управлять расписанием и загрузкой; — Разошлет оповещения о новых услугах или акциях; — Позволит принять оплату на карту/кошелек/счет; — Позволит записываться на групповые и персональные посещения; — Поможет получить от клиента отзывы о визите к вам; — Включает в себя сервис чаевых. Для новых пользователей первый месяц бесплатно. Зарегистрироваться в сервисе
ОПРЕДЕЛЕНИЕ 2.2. Множество А есть подмножество множества В (обозначается А
Множества равны, если они содержат одни и те же элементы. Если А есть множество {2, 4, 6}, а В есть множество {х: х есть четное положительное целое число, которое меньше 7}, тогда А и В — равные множества. Таким образом, мы приходим к следующему определению.
ОПРЕДЕЛЕНИЕ 2.3. Пусть А и В — некоторые множества. Говорят, что А равно В. и пишут А = В, если для любого х имеем: х
Таким образом, доказательство равенства множеств А и В состоит из двух этапов:
1) Доказать, что А есть подмножество В. 2) Доказать, что В есть подмножество А.
Поскольку множество однозначно определяется только элементами, которые оно содержит, порядок их перечисления роли не играет. Например, {1, 2, 4, 6} = {2, 1, 6, 4}. Кроме того, любой элемент либо принадлежит данному множеству, либо нет. Каждый элемент может входить во множество не более одного раза.
С этого момента вводится два новых множества: универсальное множество, или универсум, и пустое множество. В известном смысле они представляют собой противоположности, поскольку пустое множество не содержит элементов, а универсальное множество содержит “все" элементы.
ОПРЕДЕЛЕНИЕ 2.4. Пустое множество, обозначаемое Ø или {}, есть множество, которое не содержит элементов. Универсальное множество U есть множество, обладающее таким свойством, что все рассматриваемые множества являются его подмножествами.
В теории чисел универсальное множество обычно совпадает со множеством всех целых или натуральных чисел. В математическом анализе универсальное множество может быть множеством всех действительных чисел или множеством всех точек 71-мерного пространства. Следует отметить, что универсальное множество U, хотя и названо универсальным, однозначно не определено, если точно не указана область рассмотрения (предметная область). Конечно, любое множество, содержащее U, может быть использовано как универсальное множество.
По определению, каждое множество есть подмножество универсального множества. Пустое множество есть подмножество любого данного множества А, поскольку каждый элемент пустого множества содержится в А. Можно сказать, что не существует элементов пустого множества, которые не принадлежали бы А.
|