Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Принцип неопределенностей Гейзенберга






В разных экспериментальных ситуациях микрообъект ве­дет себя по-разному: в одних — как частица, а в других — как волна. Этот совершенно неожиданный с точки зрения классической физики результат свидетельствовал о том, что в кван­товой физике объект не может быть исследован сам по себе, а исследуется целостная система, состоящая из объекта и тех макроусловий (экспериментальной ситуации), в которой объект находится. В классической физике также подразуме­вается, что о свойствах объекта мы узнаем благодаря показа­ниям приборов, используемых в данном эксперименте. Од­нако здесь считается, что воздействие прибора на объект пол­ностью контролируемо и никак не искажает информацию о» характеристиках изучаемого объекта. В квантовой же физике развивается неклассическая стратегия мышления, трансдис­циплинарной концепцией которой становится диалектическая концепция целостности, согласно которой целое, хотя и состоит из частей, в принципе не может быть на них поделе­но без утраты специфики как целого, так и его частей.

Неклассическое поведение объектов в микромире требует критического пересмотра самого понятия «частицы», точно локализованной во времени и пространстве. Можно говорить лишь о вероятности того, где в данный момент времени нахо­дится частица, и это является неизбежным следствием введе­ния в физическую теорию постоянной Планка, представле­ний о квантовых скачках. Физическая интерпретация «неклас­сического» поведения микрообъектов была впервые дана В. Гейзенбергом, указавшим на необходимость отказа от пред­ставлений об объектах микромира, как об объектах, движу­щихся по строго определенным траекториям, для которых од­нозначно с полной определенностью могут быть одновремен­но указаны и координата и импульс частицы в любой заданный I момент времени. Надо принять в качестве закона, описывающего движение микрообъектов, тот факт, что знание точ­кой координаты частицы приводит к полной неопределенно­сти ее импульса, и, наоборот, точное знание импульса частицы — к полной неопределенности ее координаты. Исходя из созданного им математического аппарата квантовой меха­ники, Гейзенберг установил предельную точность, с кото­рой можно одновременно определить координату и импульс микрочастицы, и получил следующее соотношение неопре­деленностей этих значений:

∆ Х ∆ Рх > h,

где ∆ Х — неопределенность в значении координаты; ∆ Рх неопределенность в значении импульса.

Произведение неопределенности в значении координаты на неопределенность в значении соответствующей компоненты им­пульса не меньше, чем величина порядка постоянной Планка h.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.