Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Тема лекции: Метод низкотемпературной сепарации






Охлаждение широко используют для осушки газа, выделения конденсата из газа газоконденсатных месторождений на установках низкотемпературной сепарации, а также при получении индивидуальных компонентов газа, выделении из природного газа редких газов, сжижении газов и т.д. Низкотемпературный способ разделения газов позволяет в зависимости от глубины охлаждения извлекать от 80 до 100% тяжелых углеводородов и осушать газ при транспортировке однофазного компонента до необходимой точки росы по влаге и углеводородам. На практике применяют низкотемпературную сепарацию (НТС), при которой получают относительно невысокие перепады температур как за счет использования пластового давления (путем дросселирования газа), так и искусственного холода (холодильных машин).

Принципиальная технологическая схема НТС изображена на рисунке 2.13

 

Рисунок 2.13 - Технологическая схема НТС на газосборном пункте

 

Сырой газ из скважины поступает на установку комплексной подготовки, где после предварительного дросселирования (или без него) направляется в сепаратор первой ступени 3 для отделения от капельной жидкости. Затем газ направляют в теплообменник 5 для охлаждения газом, поступающим в межтрубное пространство из низкотемпературного сепаратора 7. Из теплообменника газ поступает через эжектор 6 или штуцер в низкотемпературной сепаратор 7, в котором за счет понижения температуры в теплообменнике и на штуцере (эжекторе) выделяются жидкость. Осушенный газ поступает в теплообменник 5, охлаждает продукцию скважины и направляется в промысловый газосборный коллектор. Нестабильный конденсат и водный раствор ингибитора (например, диэтиленгликоля (ДЭГ)), предотвращающий гидратообразование, из сепаратора первой ступени 3 поступают в конденсатосборник 4 и далее в емкость 10. Здесь происходит разделение конденсата и водного раствора ДЭГ. Затем конденсат через теплообменник 9 подают в поток газа перед низкотемпературным сепаратором, а водный раствор ДЭГа направляют через емкость 11 и фильтр 12 для очистки от механических примесей в регенерационную установку 13, после чего регенерированный гликоль с установки с помощью насоса 19 подают в шлейфы для предотвращения образования гидратов в них. Поток нестабильного углеводородного конденсата и водного раствора ДЭГ направляется в разделительную емкость 15 через межтрубное пространство теплообменников, где охлаждает нестабильный конденсат, поступающий из емкости 10 для впрыскивания в газовый поток. Водный раствор гликоля через фильтр поступает в установку регенерации 14, после чего насосом 19 его подают в газовый поток перед теплообменником 5. Конденсат из разделительной емкости 15 направляют через межтрубное пространство теплообменника 18 в деэтанизатор. Установка деэтанизации состоит из тарельчатой колонны, печи 17 и теплообменника 18. Заданная температура в нижней части деэтанизатора поддерживается с помощью теплообменника 18, в котором стабильный конденсат (нижний продукт деэтанизатора), подогретый в печи 17 до температуры 433 К, отдает тепло насыщенному конденсату, поступающему из емкости 15. Охлажденный стабильный конденсат подают в конденсатопровод. По схеме предусматривается также ввод части холодного нестабильного конденсата на верхнюю тарелку стабилизатора. В этом случае деэтанизатор работает в режиме абсорбционно-отпарной колонны.

Если предусматривается транспортировка конденсата в железнодорожных цистернах, то стабилизацию его проводят в ректификационной колонне, работающей в режиме либо частичной, либо полной дебутанизации. Газ выветривания (дегазации) из емкости 15 и газ деэтанизатора 16 через штуцер поступают в общий поток. Если давление недостаточно, то предусматривается компрессор 8. Газ дегазации из емкости 10 также возвращается в общий поток. Периодический контроль за дебитами газа и жидкости осуществляется с помощью сепаратора 1, на выкидной линии которого установлены замерная диаграмма и конденсатосборник-разделитель 2 со счетчиками. Если на устье скважины температура газа достаточно высока и на его пути до газосборного пункта гидраты не образуются, то схему подготовки газа упрощают. На период добычи, когда требуются дополнительные источники холода на установке НТС для обеспечения требуемой точки росы, в схеме вместо штуцера устанавливают турбодетандер, использование которого дает эффект по снижению температуры, больший в 3-4 раза, чем при обычном дросселировании. В этом случае в схеме предусматривают сепаратор второй ступени, предназначенный для отделения жидкости от газа, поступающего в турбодетандер. Осушенный газ из межтрубного пространства теплообменника 5 поступает на прием компрессора, установленного на одном валу с турбодетандером, и далее в промысловый коллектор.

Возможны модификации описанной схемы в соответствии с конкретными условиями. В частности, дополнительно к теплообменнику 5 устанавливают воздушный или водяной холодильник. По мере снижения пластового давления для подержания постоянной температуры сепарации газа на установках НТС требуется последовательное увеличение поверхности теплообменников, что приводит к необходимости перестройки установки.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.